Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1838(3): 731-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24315999

RESUMO

Unique species of ceramide (Cer) with very-long-chain polyunsaturated fatty acid (VLCPUFA), mainly 28-32 carbon atoms, 4-5 double bonds, in nonhydroxy and 2-hydroxy forms (n-V Cer and h-V Cer, respectively), are generated in rat spermatozoa from the corresponding sphingomyelins during the acrosomal reaction. The aim of this study was to determine the properties of these sperm-distinctive ceramides in Langmuir monolayers. Individual Cer species were isolated by HPLC and subjected to analysis of surface pressure, surface potential, and Brewster angle microscopy (BAM) as a function of molecular packing. In comparison with known species of Cer, n-V Cer and h-V Cer species showed much larger mean molecular areas and increased molecular dipole moments in liquid expanded phases, which suggest bending and partial hydration of the double bonded portion of the VLCPUFA. The presence of the 2-hydoxyl group induced a closer molecular packing in h-V Cer than in their chain-matched n-V Cer. In addition, all these Cer species showed liquid-expanded to liquid-condensed transitions at room temperature. Existence of domain segregation was confirmed by BAM. Additionally, thermodynamic analysis suggests a phase transition close to the physiological temperature for VLCPUFA-Cers if organized as bulk dispersions.


Assuntos
Ceramidas/química , Ceramidas/metabolismo , Ácidos Graxos Insaturados/metabolismo , Espermatozoides/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Ácidos Graxos Insaturados/química , Masculino , Transição de Fase , Ratos , Propriedades de Superfície , Termodinâmica
2.
Biochim Biophys Acta ; 1828(11): 2496-505, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23806650

RESUMO

Ascorbyl palmitate (ASC16) is an anionic amphiphilic molecule of pharmacological interest due to its antioxidant properties. We found that ASC16 strongly interacted with model membranes. ASC16 penetrated phospholipid monolayers, with a cutoff near the theoretical surface pressure limit. The presence of a lipid film at the interface favored ASC16 insertion compared with a bare air/water surface. The adsorption and penetration time curves showed a biphasic behavior: the first rapid peak evidenced a fast adsorption of charged ASC16 molecules to the interface that promoted a lowering of surface pH, thus partially neutralizing and compacting the film. The second rise represented an approach to the equilibrium between the ASC16 molecules in the subphase and the surface monolayer, whose kinetics depended on the ionization state of the film. Based on the Langmuir dimiristoylphosphatidylcholine+ASC16 monolayer data, we estimated an ASC16 partition coefficient to dimiristoylphosphatidylcholine monolayers of 1.5×10(5) and a ΔGp=-6.7kcal·mol(-1). The rheological properties of the host membrane were determinant for ASC16 penetration kinetics: a fluid membrane, as provided by cholesterol, disrupted the liquid-condensed ASC16-enriched domains and favored ASC16 penetration. Subphase pH conditions affected ASC16 aggregation in bulk: the smaller structures at acidic pHs showed a faster equilibrium with the surface film than large lamellar ones. Our results revealed that the ASC16 interaction with model membranes has a highly complex regulation. The polymorphism in the ASC16 bulk aggregation added complexity to the equilibrium between the surface and subphase form of ASC16, whose understanding may shed light on the pharmacological function of this drug.


Assuntos
Ácido Ascórbico/análogos & derivados , Dimiristoilfosfatidilcolina/química , Reologia , Eletricidade Estática , Adsorção , Ácido Ascórbico/química , Concentração de Íons de Hidrogênio , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA