Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33807013

RESUMO

In this work, a previously developed mathematical model to predict bulk density of SLMed (produced via Selective Laser Melting) component is enhanced by taking laser power, scanning speed, hatch spacing, powder's thermal conductivity and specific heat capacity as independent variables. Experimental data and manufacturing conditions for the selective laser melting (SLM) of metallic materials (which include aluminum, steel, titanium, copper, tungsten and nickel alloys) are adapted from the literature and used to evaluate the validity of the proposed enhanced model. A strong relation between dependent and independent dimensionless products is observed throughout the studied materials. The proposed enhanced mathematical model shows to be highly accurate since the computed root-mean-square-error values (RMSE) does not exceed 5 × 10-7. Furthermore, an analytical expression for the prediction of bulk density of SLMed components was developed. From this, an expression for determining the needed scanning speed, with respect to laser power, to achieve highly dense components produced via SLM, is derived.

2.
Materials (Basel) ; 14(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494386

RESUMO

In this work, dimensional analysis is used to develop a general mathematical model to predict bulk density of SLMed components taking volumetric energy density, scanning speed, powder's thermal conductivity, specific heat capacity, and average grain diameter as independent variables. Strong relation between dependent and independent dimensionless products is observed. Inconel 718 samples were additively manufactured and a particular expression, in the form of a power-law polynomial, for its bulk density, in the working domain of the independent dimensionless product, was obtained. It is found that with longer laser exposure time, and lower scanning speed, better densification is attained. Likewise, volumetric energy density has a positive influence on bulk density. The negative effect of laser power in bulk density is attributed to improper process conditions leading to powder particle sublimation and ejection. A maximum error percentage between experimental and predicted bulk density of 3.7119% is achieved, which corroborates the accuracy of our proposed model. A general expression for determining the scanning speed, with respect to laser power, needed to achieve highly dense components, was derived. The model's applicability was further validated considering SLMed samples produced by AlSi10Mg and Ti6Al4V alloys. This article elucidates how to tune relevant manufacturing parameters to produce highly dense SLM parts using mathematical expressions derived from Buckingham's π- theorem.

3.
Drug Dev Ind Pharm ; 47(12): 1904-1914, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35236214

RESUMO

Nanostructured polyelectrolyte complexes (nano PECs) were obtained by polyelectrolyte complexation technique from chitosan (CS) and sodium alginate (SA). Different polymer proportions were tested, as well as the addition order and homogenization type, to assess the influence on the nano PECs characteristics. The spherical shape and nanometric scale of the systems were observed by scanning electron microscopy (SEM). Nano PECs size, PDI, and zeta potential (ZP) ranged from 252 to 616 nm, from 0.22 to 0.73 and -50 to 30 mV, respectively. The increase of polymer proportion and the ultra-turrax homogenization led to the enlargement of particles size and PDI. However, no influence was observed on the ZP. The NP1s-Rb and NP4s-Rb, obtained through the sonicator with rifampicin (RIF) added before the CS and SA complexation, were selected due to the most promising characteristics of diameter (301 and 402 nm), PDI (0.27 and 0.26), and RIF incorporation (78 and 69%). The release profiles of RIF incorporated in both nano PECs were similar, with a sustained release of the drug for 180 min in phosphate buffer pH 7.2. The Weibull and the Korsmeyer-Peppas models better describe the RIF release from NP1s-Rb and NP4s-Rb, respectively, demonstrating that the release process was driven by different mechanism according to the particle composition. The nano PECs were lyophilized to prolong it stability and for possible nebulization. The addition of dextrose to the system allowed for resuspension after lyophilization. Therefore, with the results obtained, the incorporation of RIF in nano PECs based on CS and SA presents a promising system for the treatment of tuberculosis.


Assuntos
Quitosana , Tuberculose , Alginatos/química , Quitosana/química , Portadores de Fármacos/química , Humanos , Polieletrólitos/química , Polímeros , Rifampina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA