Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1133009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152158

RESUMO

Auxin distribution is essential for determining root developmental patterns. The formation of lateral roots and constitutive aerenchyma, which is a gas space developed through cell death, is regulated by auxin in rice (Oryza sativa). However, it is unclear whether the involvement of auxin in constitutive aerenchyma formation is conserved in other species. In this study, we found that constitutive aerenchyma formation was regulated by auxin in the nodal roots of Zea nicaraguensis, a wild relative of maize (Zea mays ssp. mays) grown naturally on frequently flooded coastal plains. Subsequent gravistimulation (root rotation) experiments showed opposite patterns of aerenchyma and lateral root formation. Lateral root formation on the convex side of rotated roots is known to be stimulated by a transient increase in auxin level in the pericycle. We found that aerenchyma formation was accelerated in the cortex on the concave side of the rotated nodal roots of Z. nicaraguensis. A cortex-specific expression analysis of auxin-responsive genes suggested that the auxin level was higher on the concave side than on the convex side. These results suggest that asymmetric auxin distribution underlies the regulation of aerenchyma and lateral root formation in the nodal roots of Z. nicaraguensis. As aerenchyma reduces the respiratory cost of the roots, constitutive aerenchyma on the concave side of the nodal root may balance resource allocation, thereby contributing to the uptake of water and nutrients by newly formed lateral roots. Our study provides insights into auxin-dependent asymmetric root patterning such as that of gravistimulation and hydropatterning response.

2.
New Phytol ; 229(1): 94-105, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31990995

RESUMO

Plants typically respond to waterlogging by producing new adventitious roots with aerenchyma and many wetland plants form a root barrier to radial O2 loss (ROL), but it was not known if this was also the case for lateral roots. We tested the hypothesis that lateral roots arising from adventitious roots can form a ROL barrier, using root-sleeving electrodes and O2 microsensors to assess ROL of Zea nicaraguensis, the maize (Zea mays ssp. mays) introgression line with a locus for ROL barrier formation (introgression line (IL) #468) from Z. nicaraguensis and a maize inbred line (Mi29). Lateral roots of Z. nicaraguensis and IL #468 both formed a ROL barrier under stagnant, deoxygenated conditions, whereas Mi29 did not. Lateral roots of Z. nicaraguensis had higher tissue O2 status than for IL #468 and Mi29. The ROL barrier was visible as suberin in the root hypodermis/exodermis. Modelling showed that laterals roots can grow to a maximum length of 74 mm with a ROL barrier, but only to 33 mm without a barrier. Presence of a ROL barrier in lateral roots requires reconsideration of the role of these roots as sites of O2 loss, which for some species now appears to be less than hitherto thought.


Assuntos
Oxigênio , Zea mays , Cromossomos , Raízes de Plantas/genética , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA