Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39330625

RESUMO

In this work, we investigate the influence of curvature on the dynamic susceptibility in FeGe nanowires, both curved and straight, hosting a skyrmionic tube texture under the action of an external bias field, using micromagnetic simulations. Our results demonstrate that both the resonance frequencies and the number of resonant peaks are highly dependent on the curvature of the system. To further understand the nature of the spin wave modes, we analyze the spatial distributions of the resonant mode amplitudes and phases, describing the differences among resonance modes observed. The ability to control the dynamic properties and frequencies of these nanostructures underscores their potential application in frequency-selective magnetic devices.

2.
Nanomaterials (Basel) ; 13(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36615923

RESUMO

The encapsulation of magnetic nickel nanowires (NiNWs) with gelatin is proposed as an alternative for optical label detection. Magnetic nanowires can be detected at very low concentrations using light-scattering methods. This detection capacity could be helpful in applications such as transducers for molecular and biomolecular sensors; however, potential applications require the attachment of specific binding molecules to the nanowire structure. In the present study, a method is presented which is helpful in coating magnetic nanowires with gelatin, a material with the potential to handle specific decoration and functionalization of the nanowires; in the first case, silver nanoparticles (AgNPs) are efficiently used to decorate the nanowires. Furthermore, it is shown that the synthesized gelatin-coated particles have excellent detectability to the level of 140 pg/mL; this level of detection outperforms more complex techniques such as ICP-OES (~3 ng/mL for Ni) and magnetoresistance sensing (~10 ng/mL for magnetic nanoparticles).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA