Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Nutrients ; 16(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794746

RESUMO

BACKGROUND: Cytokine storm and oxidative stress are present in chronic obstructive pulmonary disease (COPD). Individuals with COPD present high levels of NF-κB-associated cytokines and pro-oxidant agents as well as low levels of Nrf2-associated antioxidants. This condition creates a steroid-resistant inflammatory microenvironment. Lacticaseibacillus rhamnosus (Lr) is a known anti-cytokine in lung diseases; however, the effect of Lr on lung inflammation and oxidative stress in steroid-resistant COPD mice remains unknown. OBJECTIVE: Thus, we investigated the Lr effect on lung inflammation and oxidative stress in mice and macrophages exposed to cigarette smoke extract (CSE) and unresponsive to steroids. METHODS: Mice and macrophages received dexamethasone or GLPG-094 (a GPR43 inhibitor), and only the macrophages received butyrate (but), all treatments being given before CSE. Lung inflammation was evaluated from the leukocyte population, airway remodeling, cytokines, and NF-κB. Oxidative stress disturbance was measured from ROS, 8-isoprostane, NADPH oxidase, TBARS, SOD, catalase, HO-1, and Nrf2. RESULTS: Lr attenuated cellularity, mucus, collagen, cytokines, ROS, 8-isoprostane, NADPH oxidase, and TBARS. Otherwise, SOD, catalase, HO-1, and Nrf2 were upregulated in Lr-treated COPD mice. Anti-cytokine and antioxidant effects of butyrate also occurred in CSE-exposed macrophages. GLPG-094 rendered Lr and butyrate less effective. CONCLUSIONS: Lr attenuates lung inflammation and oxidative stress in COPD mice, suggesting the presence of a GPR43 receptor-dependent mechanism also found in macrophages.


Assuntos
Lacticaseibacillus rhamnosus , Macrófagos , Estresse Oxidativo , Doença Pulmonar Obstrutiva Crônica , Receptores Acoplados a Proteínas G , Animais , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Camundongos , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Fumaça/efeitos adversos , Dexametasona/farmacologia , Butiratos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo
2.
J Inflamm (Lond) ; 21(1): 15, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698414

RESUMO

INTRODUCTION: PM exposure can induce inflammatory and oxidative responses; however, differences in these adverse effects have been reported depending on the chemical composition and size. Moreover, inflammatory mechanisms such as NLRP3 activation by PM10 have yet to be explored. OBJECTIVE: To assess the impact of PM10 on cell cytotoxicity and the inflammatory response through in vitro and in vivo models. METHODOLOGY: Peripheral blood mononuclear cells (PBMCs) from healthy donors were exposed to PM10. Cytotoxicity was determined using the LDH assay; the expression of inflammasome components and the production of pro-inflammatory cytokines were quantified through qPCR and ELISA, respectively; and the formation of ASC complexes was examined using confocal microscopy. For in vivo analysis, male C57BL6 mice were intranasally challenged with PM10 and bronchoalveolar lavage fluid was collected to determine cell counts and quantification of pro-inflammatory cytokines by ELISA. RNA was extracted from lung tissue, and the gene expression of inflammatory mediators was quantified. RESULTS: PM10 exposure induced significant cytotoxicity at concentrations over 100 µg/mL. Moreover, PM10 enhances the gene expression and release of pro-inflammatory cytokines in PBMCs, particularly IL-1ß; and induces the formation of ASC complexes in a dose-dependent manner. In vivo, PM10 exposure led to cell recruitment to the lungs, which was characterized by a significant increase in polymorphonuclear cells compared to control animals. Furthermore, PM10 induces the expression of several inflammatory response-related genes, such as NLRP3, IL-1ß and IL-18, within lung tissue. CONCLUSION: Briefly, PM10 exposure reduced the viability of primary cells and triggered an inflammatory response, involving NLRP3 inflammasome activation and the subsequent production of IL-1ß. Moreover, PM10 induces the recruitment of cells to the lung and the expression of multiple cytokines; this phenomenon could contribute to epithelial damage and, thus to the development and exacerbation of respiratory diseases such as viral infections.

3.
Front Pharmacol ; 15: 1356598, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666018

RESUMO

Introduction: Asthma is a condition of airflow limitation, common throughout the world, with high mortality rates, especially as it still faces some obstacles in its management. As it constitutes a public health challenge, this study aimed to investigate the effect of copaiba oil (e.g., Copaifera langsdorffii), as a treatment resource, at doses of 50 and 100 mg/kg on certain mediators of acute lung inflammation (IL-33, GATA3, FOXP3, STAT3, and TBET) and early mechanisms of lung remodeling (degradation of elastic fiber tissues, collagen deposition, and goblet cell hyperplasia). Methods: Using an ovalbumin-induced acute allergic asthma model in BALB/c mice, we analyzed the inflammatory mediators through immunohistochemistry and the mechanisms of lung remodeling through histopathology, employing orcein, Masson's trichrome, and periodic acid-Schiff staining. Results: Copaiba oil treatment (CO) reduced IL-33 and increased FOXP3 by stimulating the FOXP3/GATA3 and FOXP3/STAT3 pathways. Additionally, it upregulated TBET, suggesting an additional role in controlling GATA3 activity. In the respiratory epithelium, CO decreased the fragmentation of elastic fibers while increasing the deposition of collagen fibers, favoring epithelial restructuring. Simultaneously, CO reduced goblet cell hyperplasia. Discussion: Although additional research is warranted, the demonstrated anti-inflammatory and re-epithelializing action makes CO a viable option in exploring new treatments for acute allergic asthma.

4.
Apoptosis ; 29(3-4): 321-330, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37796354

RESUMO

The removal of dead cells (efferocytosis) contributes to the resolution of the infection and preservation of the tissue. Depending on the environment milieu, macrophages may show inflammatory (M1) or anti-inflammatory (M2) phenotypes. Inflammatory leukocytes are recruited during infection, followed by the accumulation of infected and non-infected apoptotic cells (AC). Efferocytosis of non-infected AC promotes TGF-ß, IL-10, and PGE2 production and the polarization of anti-inflammatory macrophages. These M2 macrophages acquire an efficient ability to remove apoptotic cells that are involved in tissue repair and resolution of inflammation. On the other hand, the impact of efferocytosis of infected apoptotic cells on macrophage activation profile remains unknown. Here, we are showing that the efferocytosis of gram-positive Streptococcus pneumoniae-AC (Sp-AC) or gram-negative Klebsiella pneumoniae-AC (Kp-AC) promotes distinct gene expression and cytokine signature in macrophages. Whereas the efferocytosis of Kp-AC triggered a predominant M1 phenotype in vitro and in vivo, the efferocytosis of Sp-AC promoted a mixed M1/M2 activation in vitro and in vivo in a model of allergic asthma. Together, these findings suggest that the nature of the pathogen and antigen load into AC may have different impacts on inducing macrophage polarization.


Assuntos
Apoptose , Fagocitose , Macrófagos/metabolismo , Fenótipo , Anti-Inflamatórios
5.
Rev Alerg Mex ; 70(4): 190, 2023 Sep.
Artigo em Espanhol | MEDLINE | ID: mdl-37933931

RESUMO

Objective: To evaluate the effect of pharmacological modulation of HIF-1 on the expression of IL-33 and IL-17 in a murine model of allergic pulmonary inflam- mation (API) with different degrees of severity. Methods: 5 mice/group received ovalbumin (OVA) 1(mild), 2(moderate) or 3(severe) challenges via i.t. prior to allergen sensitization, in addition to the HIF-1 induction or inhibition groups, received EDHB (OVA+EDHB) i.p. or 2ME (OVA+2ME) i.t. respectively. Control groups received saline solution (SS) in the same way. HE (inflammatory infiltrate), PAS (mucus production) and immunohistochemical staining for HIF-1a, IL-33, IL-17 were performed, quantitatively analyzing by digital pathology. Results: We obtained different degrees of severity with a greater number of challenges, increasing the expression of HIF-1, correlating with the expression of IL-33/IL-17. Increasing or decreasing, respectively by pharmacological modulation. Conclusions: The above suggests that the high expression of HIF-1 favors the production of IL-33 and IL-17 contributing to the damage in lung tissue and the severity of the disease and these can be regulated through the modulation of HIF- 1.


Objetivo: Evaluar el efecto de la modulación farmacológica de HIF-1 en la expresión de IL-33 e IL-17 en un modelo murino de inflamación alérgica pulmonar (IAP) con diferentes grados de severidad. Métodos: 5 ratones/grupo recibieron ovoalbúmina (OVA) 1(leve), 2(moderada) o 3(severa) retos vía i.t. previa sensibilización como alergeno, además los grupos de inducción o inhibición de HIF-1a, recibieron EDHB (OVA+EDHB) i.p. o 2ME (OVA+2ME) i.t. respectivamente. Los grupos controles recibieron solución salina (SS) de igual forma. Se realizaron tinciones de HE (infiltrado inflamatorio), PAS (producción de moco) e inmunohistoquímicas de HIF-1a, IL-33, IL-17, analizando cuantitativamente por patología digital. Resultados: Obtuvimos diferentes grados de severidad a mayor número de retos, incrementando la expresión de HIF-1, correlacionando con la expresión de IL- 33/IL-17. Aumentando o disminuyendo, respectivamente por la modulación farmacológica. Conclusiones: Lo anterior sugiere que la alta expresión de HIF-1 favorece la producción de IL-33 e IL-17 contribuyendo al daño en el tejido pulmonar y la severi- dad de la enfermedad y estas pueden ser reguladas a través de la modulación de HIF-1.


Assuntos
Hipersensibilidade , Fator 1 Induzível por Hipóxia , Interleucina-17 , Interleucina-33 , Pneumopatias , Animais , Camundongos , Alérgenos , Interleucina-17/metabolismo , Interleucina-33/metabolismo , Pulmão , Pneumopatias/tratamento farmacológico , Pneumopatias/metabolismo , Hipersensibilidade/tratamento farmacológico , Hipersensibilidade/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo
6.
J Allergy Clin Immunol Glob ; 2(1): 14-22, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37780109

RESUMO

Eosinophilic, noneosinophilic, or mixed granulocytic inflammations are the hallmarks of asthma heterogeneity. Depending on the priming of lung immune and structural cells, subjects with asthma might generate immune responses that are TH2-prone or TH17-prone immune response. Bacterial infections caused by Haemophilus, Moraxella, or Streptococcus spp. induce the secretion of IL-17, which in turn recruit neutrophils into the airways. Clinical studies and experimental models of asthma indicated that neutrophil infiltration induces a specific phenotype of asthma, characterized by an impaired response to corticosteroid treatment. The understanding of pathways that regulate the TH17-neutrophils axis is critical to delineate and develop host-directed therapies that might control asthma and its exacerbation episodes that course with infectious comorbidities. In this review, we outline clinical and experimental studies on the role of airway epithelial cells, S100A9, and high mobility group box 1, which act in concert with the IL-17-neutrophil axis activated by bacterial infections, and are related with asthma that is difficult to treat. Furthermore, we report critically our view in the light of these findings in an attempt to stimulate further investigations and development of immunotherapies for the control of severe asthma.

7.
J Endocrinol ; 259(1)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37552528

RESUMO

Prior research demonstrated that glucagon has protective roles against inflammation, but its effect on the resolution of inflammation remains elusive. Using in vitro and in vivo approaches, this study aimed to investigate the pro-resolving potential of glucagon on pulmonary neutrophilic inflammation caused by lipopolysaccharide. Lipopolysaccharide induced an increase in the proportions of neutrophils positives to glucagon receptor (GcgR) in vitro. In addition, lipopolysaccharide induced an increase in the neutrophil accumulation and expression of GcgR by the inflammatory cells in the lungs, however, without altering glucagon levels. Intranasal treatment with glucagon, at the peak of neutrophilic inflammation, reduced the neutrophil number in the bronchoalveolar lavage (BAL), and lung tissue within 24 h. The reduction of neutrophilic inflammation provoked by glucagon was accompanied by neutrophilia in the blood, an increase in the apoptosis rate of neutrophils in the BAL, enhance in the pro-apoptotic Bax protein expression, and decrease in the anti-apoptotic Bcl-2 protein levels in the lung. Glucagon also induced a rise in the cleavage of caspase-3 in the lungs; however, it was not significant. Glucagon inhibited the levels of IL-1ß and TNF-α while increasing the content of pro-resolving mediators transforming growth factor (TGF-ß1) and PGE2 in the BAL and lung. Finally, glucagon inhibited lipopolysaccharide-induced airway hyper-reactivity, as evidenced by the reduction in lung elastance values in response to methacholine. In conclusion, glucagon-induced resolution of neutrophilic inflammation by promoting cessation of neutrophil migration and a rise of neutrophil apoptosis and the levels of pro-resolving mediators TGF-ß1 and PGE2.


Assuntos
Glucagon , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Glucagon/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Dinoprostona/farmacologia , Pulmão , Inflamação/metabolismo , Neutrófilos/metabolismo
8.
Cells ; 12(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37508515

RESUMO

Idiopathic pulmonary fibrosis (IPF) is the most frequent and severe idiopathic interstitial pneumonia. It is a chronic and progressive disease with a poor prognosis and is a major cause of morbidity and mortality. This disease has no cure; therefore, there is a clinical need to search for alternative treatments with greater efficacy. In this study, we aimed to evaluate the effect of extracellular vesicles (EVs) from Zingiber officinale (EVZO) in a murine model of bleomycin (BLM)-induced IPF administered through an osmotic minipump. EVZO had an average size of 373 nm and a spherical morphology, as identified by scanning electron microscopy. Label-free proteomic analysis of EVZOs was performed by liquid chromatography coupled to mass spectrometry, and 20 proteins were identified. In addition, we demonstrated the protease activity of EVZO by gelatin-degrading zymography assay and the superoxide dismutase (SOD) activity of EVZO by an enzymatic assay. In the BLM-induced IPF mouse model, nasal administration of 50 µg of EVZO induced recovery of alveolar space size and decreased cellular infiltrate, collagen deposition, and expression of α-SMA-positive cells. Additionally, EVZO inhibited inflammatory markers such as iNOS and COX-2, lipid peroxidation, and apoptotic cells. These results show that EVZO may represent a novel natural delivery mechanism to treat IPF.


Assuntos
Vesículas Extracelulares , Fibrose Pulmonar Idiopática , Zingiber officinale , Camundongos , Animais , Bleomicina/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Modelos Animais de Doenças , Proteômica , Fibrose Pulmonar Idiopática/metabolismo , Anti-Inflamatórios/farmacologia , Vesículas Extracelulares/metabolismo , Peptídeo Hidrolases
9.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;56: e12203, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1447682

RESUMO

Astragaloside IV is a biologically active substance derived from the traditional Chinese medicine Astragalus mambranaceus Bunge, and has antioxidant, anti-inflammatory, and anti-apoptotic properties. In this study, we aimed to investigate the effects of astragaloside IV on Klebsiella pneumonia rats and the underlying mechanisms. Klebsiella pneumoniae (K. pneumoniae) rats were treated with different dosages of astragaloside IV (5, 10, and 20 mg/kg) by intragastric administration. The levels of pro-inflammatory cytokines interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α in bronchoalveolar lavage fluid (BALF) were determined. Pathological changes of lung tissue were inspected by HE staining. The expression of transforming growth factor (TGF)-β1 in lung tissue was determined with immunohistochemistry, and the expression levels of TGF-β1, p-Smad2/Smad2, p-Smad3/Smad3, IκBα/p-IκBα, and p65/p-p65 in lung tissue were determined by western blot. The mechanism was further investigated with TGF-β1 inhibitor SB-431542. Astragaloside IV reduced the elevated levels of pro-inflammatory cytokines caused by K. pneumoniae and improved lung tissue damage in a dose-dependent manner. Astragaloside IV also decreased the expression of TGF-β1/Smad signaling pathway-related proteins and decreased the protein levels of inflammation-related p-IκBα and p65 in lung tissues induced by K. pneumoniae. Additionally, it was found that the effects of 20 mg/kg astragaloside IV were similar to SB-431542, which could improve pulmonary fibrosis induced by K. pneumoniae, decrease the levels of TGF-β1/Smad signaling pathway-related proteins in lung, and reduce inflammation at the same time. Astragaloside IV could alleviate the inflammation of rat pneumonia induced by K. pneumoniae through suppressing the TGF-β1/Smad pathway.

10.
Front Immunol ; 14: 1287512, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38299144

RESUMO

Acute respiratory distress syndrome (ARDS) is marked by damage to the capillary endothelium and alveolar epithelium following edema formation and cell infiltration. Currently, there are no effective treatments for severe ARDS. Pathologies such as sepsis, pneumonia, fat embolism, and severe trauma may cause ARDS with respiratory failure. The primary mechanism of edema clearance is the epithelial cells' Na/K-ATPase (NKA) activity. NKA is an enzyme that maintains the electrochemical gradient and cell homeostasis by transporting Na+ and K+ ions across the cell membrane. Direct injury on alveolar cells or changes in ion transport caused by infections decreases the NKA activity, loosening tight junctions in epithelial cells and causing edema formation. In addition, NKA acts as a receptor triggering signal transduction in response to the binding of cardiac glycosides. The ouabain (a cardiac glycoside) and oleic acid induce lung injury by targeting NKA. Besides enzymatic inhibition, the NKA triggers intracellular signal transduction, fostering proinflammatory cytokines production and contributing to lung injury. Herein, we reviewed and discussed the crucial role of NKA in edema clearance, lung injury, and intracellular signaling pathway activation leading to lung inflammation, thus putting the NKA as a protagonist in lung injury pathology.


Assuntos
Lesão Pulmonar , Pneumonia , Síndrome do Desconforto Respiratório , Humanos , ATPase Trocadora de Sódio-Potássio/metabolismo , Edema
11.
J Neuroinflammation ; 19(1): 303, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36527099

RESUMO

BACKGROUND: Considerable evidence indicates that a signaling crosstalk between the brain and periphery plays important roles in neurological disorders, and that both acute and chronic peripheral inflammation can produce brain changes leading to cognitive impairments. Recent clinical and epidemiological studies have revealed an increased risk of cognitive impairment and dementia in individuals with impaired pulmonary function. However, the mechanistic underpinnings of this association remain unknown. Exposure to SiO2 (silica) particles triggers lung inflammation, including infiltration by peripheral immune cells and upregulation of pro-inflammatory cytokines. We here utilized a mouse model of lung silicosis to investigate the crosstalk between lung inflammation and memory. METHODS: Silicosis was induced by intratracheal administration of a single dose of 2.5 mg SiO2/kg in mice. Molecular and behavioral measurements were conducted 24 h and 15 days after silica administration. Lung and hippocampal inflammation were investigated by histological analysis and by determination of pro-inflammatory cytokines. Hippocampal synapse damage, amyloid-ß (Aß) peptide content and phosphorylation of Akt, a proxy of hippocampal insulin signaling, were investigated by Western blotting and ELISA. Memory was assessed using the open field and novel object recognition tests. RESULTS: Administration of silica induced alveolar collapse, lung infiltration by polymorphonuclear (PMN) cells, and increased lung pro-inflammatory cytokines. Lung inflammation was followed by upregulation of hippocampal pro-inflammatory cytokines, synapse damage, accumulation of the Aß peptide, and memory impairment in mice. CONCLUSION: The current study identified a crosstalk between lung and brain inflammatory responses leading to hippocampal synapse damage and memory impairment after exposure to a single low dose of silica in mice.


Assuntos
Pneumonia , Silicose , Animais , Camundongos , Dióxido de Silício/toxicidade , Camundongos Endogâmicos C57BL , Silicose/patologia , Pneumonia/induzido quimicamente , Pneumonia/patologia , Inflamação/induzido quimicamente , Inflamação/patologia , Pulmão/patologia , Sinapses/patologia , Peptídeos beta-Amiloides , Hipocampo/patologia , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/patologia , Citocinas
12.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361722

RESUMO

Acute respiratory distress syndrome (ARDS) consists of uncontrolled inflammation that causes hypoxemia and reduced lung compliance. Since it is a complex process, not all details have been elucidated yet. In a well-controlled experimental murine model of lipopolysaccharide (LPS)-induced ARDS, the activity and viability of macrophages and neutrophils dictate the beginning and end phases of lung inflammation. C-C chemokine receptor type 2 (CCR2) is a critical chemokine receptor that mediates monocyte/macrophage activation and recruitment to the tissues. Here, we used CCR2-deficient mice to explore mechanisms that control lung inflammation in LPS-induced ARDS. CCR2-/- mice presented higher total numbers of pulmonary leukocytes at the peak of inflammation as compared to CCR2+/+ mice, mainly by enhanced influx of neutrophils, whereas we observed two to six-fold lower monocyte or interstitial macrophage numbers in the CCR2-/-. Nevertheless, the time needed to control the inflammation was comparable between CCR2+/+ and CCR2-/-. Interestingly, CCR2-/- mice presented higher numbers and increased proliferative rates of alveolar macrophages from day 3, with a more pronounced M2 profile, associated with transforming growth factor (TGF)-ß and C-C chemokine ligand (CCL)22 production, decreased inducible nitric oxide synthase (Nos2), interleukin (IL)-1ß and IL-12b mRNA expression and increased mannose receptor type 1 (Mrc1) mRNA and CD206 protein expression. Depletion of alveolar macrophages significantly delayed recovery from the inflammatory insult. Thus, our work shows that the lower number of infiltrating monocytes in CCR2-/- is partially compensated by increased proliferation of resident alveolar macrophages during the inflammation control of experimental ARDS.


Assuntos
Quimiocinas C , Pneumonia , Síndrome do Desconforto Respiratório , Camundongos , Animais , Receptores de Quimiocinas , Macrófagos Alveolares/metabolismo , Lipopolissacarídeos/farmacologia , Inflamação , RNA Mensageiro , Proliferação de Células , Receptores CCR2/genética , Camundongos Endogâmicos C57BL , Quimiocina CCL2/metabolismo
13.
Int Immunopharmacol ; 113(Pt A): 109311, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36252489

RESUMO

As a consequence of systemic inflammation caused by ischemia and reperfusion (I/R) due to aortic occlusion, the lungs can exhibit increased microvascular permeability, local release of pro-inflammatory mediators, and leukocyte infiltration. Lung tissue infiltration by activated neutrophils is followed by acute respiratory distress syndrome, which is linked to acute pulmonary microvascular damage, high mortality rates, and organ dysfunction. Previous studies have demonstrated that female sex hormones modulate the inflammatory response and that prophylactic treatment with 17ß-estradiol (E2) can prevent fatalities and preserve mesenteric perfusion and intestinal integrity after ischemia/reperfusion induced by aortic occlusion. In this study, we focused on the protective effects of estradiol after aortic ischemia/reperfusion by evaluating lung injury and endothelial alterations. Upon anesthesia and mechanical ventilation, male rats were subjected to aortic occlusion for 20 min, followed by 2 h of reperfusion. In parallel, one group of rats received a single injection of estradiol (280 µg/kg, i.v.) 30 min before ischemia. We observed increased serum concentrations of IL-1ß, IL-6 and IL-10 in the I/R rats and E2 was able to reduce them. E2 effects after 2 h of reperfusion resulted mainly in decreasing of edema, iNOS expression and preventing leukocyte infiltration. Overall, our data indicate that estradiol might be a supplementary approach to deal with systemic processes and lung deterioration.


Assuntos
Pneumonia , Traumatismo por Reperfusão , Ratos , Masculino , Feminino , Animais , Traumatismo por Reperfusão/metabolismo , Aorta Torácica , Ratos Wistar , Pneumonia/tratamento farmacológico , Pneumonia/etiologia , Estradiol/farmacologia , Estradiol/uso terapêutico , Estradiol/metabolismo , Pulmão , Isquemia/metabolismo
14.
Braz J Vet Med ; 44: e001922, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36066916

RESUMO

Dirofilaria immitis is a nematode that infects canids worldwide as well as other mammalian species, including humans. Worms and dogs are well adapted to one another, making dogs the best urban host for the parasite. Nevertheless, 30% of dogs do not sufficiently present microfilaremia, that is, the low larval load impairs transmission by mosquitoes and diagnosis by its detection in the blood samples. Therefore, the canine diagnosis must always include a microfilaria test and serological tests to detect adult worm antigens. To describe the clinical findings in naturally infected dogs in Rio de Janeiro, 34 dogs were included in the study. All dogs were evaluated for history, anamnesis, physical examination, complete blood count (CBC), D. immitis testing for antigens (ELISA test SNAP 4Dx Plus®), and microfilarial burden. The most frequent complaint from the owners was coughing (14.7%, 5/34). The most common CBC finding was eosinophilia (29.4%), followed by thrombocytopenia (26.5%) and neutrophilia (14.7%). Of the 34 animals, 91.2% were microfilaremic, with a mean count of 11.939 microfilaria/mL. Veterinarians working in areas endemic to D. immitis should always undergo screening tests and pulmonary auscultation, and increased expiratory sounds, even in the absence of coughing, can be considered a sign of the disease, along with eosinophilia, thrombocytopenia, and neutrophilia.


Dirofilaria immitis, é um nematoide que infecta canídeos em todo o mundo, bem como outras espécies de mamíferos, incluindo humanos. Os vermes e os cães estão bem adaptados um ao outro, tornando os cães o melhor hospedeiro urbano para o parasita. Contudo, 30% dos cães não apresentam microfilaremia, prejudicando a transmissão pelos mosquitos e o diagnóstico por detecção de larvas em amostras de sangue. Portanto, o diagnóstico canino deve incluir sempre a pesquisa de microfilárias e sorologia para detecção do antígeno do verme adulto. Com o objetivo de descrever os achados clínicos de cães naturalmente infectados no Rio de Janeiro, 34 cães foram incluídos. Todos os cães foram avaliados por histórico, anamnese, exame físico, hemograma completo (CBC), teste de antígenos, pesquisa e contagem de microfilárias de D. immitis. A queixa mais frequente dos responsáveis foi a tosse (14,7% - 5/34). O achado de hemograma mais comum foi eosinofilia (29,4%), seguido de trombocitopenia (26,5%) e neutrofilia (14,7%). Dos 34 animais, 91,2% eram microfilarêmicos com contagem média de 11.939 microfilárias/mL. Os veterinários que atuam em áreas endêmicas de D. immitis devem sempre realizar exames de triagem e ausculta pulmonar, pois mesmo na ausência de tosse, sons expiratórios aumentados podem ser considerados um sinal da doença, assim como eosinofilia, trombocitopenia e neutrofilia.

15.
Antioxidants (Basel) ; 11(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36139733

RESUMO

BACKGROUND: Gold nanoparticles (AuNPs) can inhibit pivotal pathological changes in experimental asthma, but their effect on steroid-insensitive asthma is unclear. The current study assessed the effectiveness of nebulized AuNPs in a murine model of glucocorticoid (GC)-resistant asthma. METHODS: A/J mice were sensitized and subjected to intranasal instillations of ovalbumin (OVA) once a week for nine weeks. Two weeks after starting allergen stimulations, mice were subjected to Budesonide or AuNP nebulization 1 h before stimuli. Analyses were carried out 24 h after the last provocation. RESULTS: We found that mice challenged with OVA had airway hyperreactivity, eosinophil, and neutrophil infiltrates in the lung, concomitantly with peribronchiolar fibrosis, mucus production, and pro-inflammatory cytokine generation compared to sham-challenged mice. These changes were inhibited in mice treated with AuNPs, but not Budesonide. In the GC-resistant asthmatic mice, oxidative stress was established, marked by a reduction in nuclear factor erythroid 2-related factor 2 (NRF2) levels and catalase activity, accompanied by elevated values of thiobarbituric acid reactive substances (TBARS), phosphoinositide 3-kinases δ (PI3Kδ) expression, as well as a reduction in the nuclear expression of histone deacetylase 2 (HDAC2) in the lung tissue, all of which sensitive to AuNPs but not Budesonide treatment. CONCLUSION: These findings suggest that AuNPs can improve GC-insensitive asthma by preserving HDAC2 and NRF2.

16.
Life Sci ; 309: 121004, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36170891

RESUMO

In this study, the effects of exposure to isoflurane, sevoflurane and desflurane on the oxidative response and inflammation at different times was analyzed in the lungs of adult C57BL/6 mice. 120 animals were divided into 3 groups (n = 40): Isoflurane (ISO), Sevoflurane (SEV) and Desflurane (DES) and exposed to these anesthetics for 1 h (n = 10), 2 h (n = 10) and 3 h (n = 10), at a minimum alveolar concentration (MAC) equal to 1. The control group (CG) (n = 10) was exposed to ambient air. 24 h after the experimental protocol, the animals were euthanized and the bronchoalveolar lavage fluid (BALF), blood and lung tissue samples were collected. In the BALF, animals exposed to isoflurane for 2 h and 3 h showed a greater influx of leukocytes, especially macrophages compared to the CG. The ISO3h had lower leukocyte counts in the peripheral blood compared to CG, ISO1h and ISO2h. There was an increase in CCL-2 levels in the ISO3h compared to the CG. Superoxide dismutase activity was higher in ISO1h compared to CG. The activity of catalase was higher in the ISO1h and ISO2h compared to the CG. The lipid peroxidation, as well as carbonylated protein were higher in the ISO3h compared to the CG (p < 0.05). Similar results were observed in the exposure of SEV and DES compared to inflammation and redox imbalance in different periods. This study demonstrated that time is a determinant to promote a local and systemic inflammatory response to different inhalational anesthetics in a healthy murine model.


Assuntos
Anestésicos Inalatórios , Isoflurano , Éteres Metílicos , Camundongos , Animais , Isoflurano/toxicidade , Sevoflurano/efeitos adversos , Desflurano , Catalase/metabolismo , Camundongos Endogâmicos C57BL , Anestésicos Inalatórios/toxicidade , Superóxido Dismutase/metabolismo , Inflamação/induzido quimicamente , Éteres Metílicos/farmacologia
17.
Pharmacol Rep ; 74(6): 1315-1325, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35930194

RESUMO

BACKGROUND: COVID-19, the disease caused by SARS-CoV-2 virus infection, has been a major public health problem worldwide in the last 2 years. SARS-CoV-2-dependent activation of innate immune receptors contributes to the strong local and systemic inflammatory reaction associated with rapid disease evolution. The receptor-binding domain (RBD) of Spike (S) viral protein (S-RBD) is essential for virus infection and its interacting molecules in target cells are still under identification. On the other hand, the search for accessible natural molecules with potential therapeutic use has been intense and remains an active field of investigation. METHODS: C57BL6/J (control) and Toll-like receptor (TLR) 4-deficient (Lps del) mice were nebulized with recombinant S-RBD. Tumor Necrosis Factor-alpha (TNF-α) and Interleukin (IL)-6 production in bronchoalveolar lavages (BALs) was determined by enzyme-linked immunosorbent assay (ELISA). Lung-infiltrating cells recovered in BALs were quantified by hematoxylin-eosin (H&E) stain. In selected groups of animals, the natural compound Jacareubin or dexamethasone were intraperitoneally (ip) administered 2 hours before nebulization. RESULTS: A rapid lung production of TNF-α and IL-6 and cell infiltration was induced by S-RBD nebulization in control but not in Lps del mice. Pre-treatment with Jacareubin or dexamethasone prevented S-RBD-induced TNF-α and IL-6 secretion in BALs from control animals. CONCLUSIONS: S-RBD domain promotes lung TNF-α and IL-6 production in a TLR4-dependent fashion in C57BL6/J mice. Xanthone Jacareubin possesses potential anti-COVID-19 properties that, together with the previously tested anti-inflammatory activity, safety, and tolerance, make it a valuable drug to be further investigated for the treatment of cytokine production caused by SARS-CoV-2 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Camundongos , Dexametasona , Interleucina-6 , Pulmão , SARS-CoV-2 , Receptor 4 Toll-Like , Fator de Necrose Tumoral alfa , Xantonas/farmacologia , Inflamação/tratamento farmacológico
18.
Antioxidants (Basel) ; 11(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35883784

RESUMO

The use of annatto pigments has been evaluated as a therapeutic strategy in animal models of several health disorders. Beneficial effects were generally attributed to the inhibition of oxidative stress. Bixin is the main pigment present in annatto seeds and has emerged as an important scavenger of reactive oxygen (ROS) and nitrogen species (RNS). However, this carotenoid is highly hydrophobic, affecting its therapeutic applicability. Therefore, bixin represents an attractive target for nanotechnology to improve its pharmacokinetic parameters. In this study, we prepared bixin nanoparticles (npBX) and evaluated if they could prevent pulmonary inflammation and oxidative stress induced by cigarette smoke (CS). C57BL/6 mice were exposed to CS and treated daily (by gavage) with different concentrations of npBX (6, 12 and 18%) or blank nanoparticles (npBL, 18%). The negative control group was sham smoked and received 18% npBL. On day 6, the animals were euthanized, and bronchoalveolar lavage fluid (BALF), as well as lungs, were collected for analysis. CS exposure led to an increase in ROS and nitrite production, which was absent in animals treated with npBX. In addition, npBX treatment significantly reduced leukocyte numbers and TNF-α levels in the BALF of CS-exposed mice, and it strongly inhibited CS-induced increases in MDA and PNK in lung homogenates. Interestingly, npBX protective effects against oxidative stress seemed not to act via Nrf2 activation in the CS + npBX 18% group. In conclusion, npBX prevented oxidative stress and acute lung inflammation in a murine model of CS-induced acute lung inflammation.

19.
Inflammation ; 45(5): 1895-1910, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35727396

RESUMO

The association between chronic kidney disease (CKD) and pulmonary pathophysiological changes is well stablished. Nevertheless, the effects of aerobic exercise (AE) on lungs of CKD need further clarification. Thus, Swiss mice were divided in control, AE, CKD, and CKD + AE groups. CKD was induced by 0.2% adenine intake during 8 weeks (4 weeks of CKD induction and 4 weeks of AE). AE consisted in running on treadmill, at moderate intensity, 30 min/day, 5 days/week, during 4 weeks. Twenty-four hours after the last training day, functional capacity test was performed, and 48 h after the test, mice were euthanized. CKD mice showed a significant increase in urine output, serum urea, and creatinine concentrations, and decreased body weight and urine density, besides oxidative damage (p = 0.044), edema area (p < 0.001), leukocyte infiltration (p = 0.040), and collagen area in lung tissue (p = 0.004). AE resulted in an increase of distance traveled (p = 0.049) and maximum speed (p = 0.046), increased activity of catalase (p = 0.031) and glutathione peroxidase (p = 0.048) in lungs, increased levels of nitric oxide (NOx) in serum (p = 0.001) and bronchoalveolar lavage fluid (p = 0.047), and decreased kidney histological injury (p = 0.018) of CKD mice. However, AE also increased oxidative damage (p = 0.003) and did not change collagen content or perivascular edema in lungs (p > 0.05) of CKD mice. Therefore, AE attenuated kidney injury and improved antioxidants defenses in lungs. Despite no significant changes in pulmonary damage, AE significantly improved physical performance in CKD mice.


Assuntos
Antioxidantes , Insuficiência Renal Crônica , Adenina/farmacologia , Animais , Antioxidantes/farmacologia , Catalase/metabolismo , Creatinina , Glutationa Peroxidase , Rim/patologia , Pulmão/metabolismo , Camundongos , Óxido Nítrico , Estresse Oxidativo , Desempenho Físico Funcional , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/patologia , Ureia/farmacologia
20.
Life Sci ; 301: 120599, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35513085

RESUMO

Lung inflammation is modulated by cholinergic signaling and exercise training protects mice against pulmonary emphysema development; however, whether exercise training engages cholinergic signaling is unknown. AIMS: As cholinergic signaling is directly linked to the vesicular acetylcholine transporter (VAChT) levels, we evaluated whether the effects of aerobic exercise training depend on the VAChT levels in mice with pulmonary emphysema. MAIN METHODS: Wild-type (WT) and mutant (KDHOM) mice (65-70% of reduction in VAChT levels) were exposed to cigarette smoke (30 min, 2×/day, 5×/week, 12 weeks) and submitted or not to aerobic exercise training on a treadmill (60 min/day, 5×/week, 12 weeks). Lung function and inflammation were evaluated. KEY FINDINGS: Cigarette smoke reduced body mass in mice (p < 0.001) and increased alveolar diameter (p < 0.001), inflammation (p < 0.001) and collagen deposition (p < 0.01) in lung tissue. Both trained groups improved their performance in the final physical test compared to the initial test (p < 0.001). In WT mice, exercise training protected against emphysema development (p < 0.05), reduced mononuclear cells infiltrate (p < 0.001) and increased MAC-2 positive cells in lung parenchyma (p < 0.05); however, these effects were not observed in KDHOM mice. The exercise training reduced iNOS-positive cells (p < 0.001) and collagen fibers deposition (p < 0.05) in lung parenchyma of WT and KDHOM mice, although KDHOM mice showed higher levels of iNOS-positive cells. SIGNIFICANCE: Our data suggest that the protective effects of aerobic exercise training on pulmonary emphysema are, at least in part, dependent on the integrity of the lung cholinergic signaling.


Assuntos
Fumar Cigarros , Enfisema , Enfisema Pulmonar , Animais , Colinérgicos , Inflamação , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/prevenção & controle , Proteínas Vesiculares de Transporte de Acetilcolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA