RESUMO
The purpose of this study was to evaluate intrapulmonary arteriovenous shunts in patients with and without sudden unexplained infant death. We identified open intrapulmonary bronchopulmonary anastomoses as potential pathways for right-to-left shunt in a subset of infants with sudden unexplained infant death.
Assuntos
Pulmão , Morte Súbita do Lactente , Humanos , Morte Súbita do Lactente/etiologia , Morte do Lactente , Pulmão/diagnóstico por imagem , Cardiopatias Congênitas , Malformações Arteriovenosas , Masculino , Feminino , LactenteRESUMO
We present results from clinical, radiologic, gas exchange, lung mechanics, and fibre-optic bronchoscopy-guided transbronchial biopsies in a case of acute respiratory failure due to SARS-CoV-2 (Covid-19). This report highlights the pulmonary, immunological, and inflammatory changes found during acute diffuse alveolar damage and the later organizing phase. An early diffuse alveolar damage pattern with predominant epithelial involvement with active recruitment of T cells and monocytes was observed followed by a late organizing pattern with pneumocyte hyperplasia, inflammatory infiltration, prominent endotheliitis, and secondary germinal centers. The patient's deterioration paralleling the late immuno-pathological findings based the decision to administer intravenous corticosteroids, resulting in clinical, gasometric, and radiologic improvement. We believe that real-time clinicopathological correlation, along with the description of the immunological processes at play, will contribute to the full clinical picture of Covid-19 and might lead to a more rational approach in the precise timing of anti-inflammatory, anti-cytokine, or steroid therapies.
Assuntos
Brônquios/patologia , Tratamento Farmacológico da COVID-19 , Esteroides/uso terapêutico , Idoso , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/virologia , Biópsia/métodos , Brônquios/virologia , COVID-19/patologia , COVID-19/virologia , Humanos , Pulmão/patologia , Masculino , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/virologia , Insuficiência Respiratória/tratamento farmacológico , Insuficiência Respiratória/patologia , Insuficiência Respiratória/virologia , SARS-CoV-2/isolamento & purificaçãoRESUMO
The co-existence with rhinitis limits the control of asthma. Compared with oral H1 receptor antagonists, intranasal corticosteroids have been demonstrated to provide greater relief of all symptoms of rhinitis and are recommended as first-line treatment for allergic rhinitis. Intrinsic limitations of nasal delivery, such as the presence of the protective mucous layer, the relentless mucociliary clearance, and the consequent reduced residence time of the formulation in the nasal cavity, limit budesonide efficacy to the treatment of local nasal symptoms. To overcome these limitations and to enable the treatment of asthma via nasal administration, we developed a budesonide-loaded lipid-core nanocapsule (BudNC) microagglomerate powder by spray-drying using a one-step innovative approach. BudNC was obtained, as a white powder, using L-leucine as adjuvant with 75 ± 6% yield. The powder showed a bimodal size distribution curve by laser diffraction with a principal peak just above 3 µm and a second one around 0.45 µm and a drug content determined by HPLC of 8.7 mg of budesonide per gram. In vivo after nasal administration, BudNC showed an improved efficacy in terms of reduction of immune cell influx; production of eotaxin-1, the main inflammatory chemokine; and arrest of airways remodeling when compared with a commercial budesonide product in both short- and long-term asthma models. In addition, data showed that the results in the long-term asthma model were more compelling than the results obtained in the short-term model. Graphical abstract.
Assuntos
Asma , Budesonida/administração & dosagem , Nanocápsulas , Administração Intranasal , Corticosteroides , Animais , Asma/tratamento farmacológico , Budesonida/uso terapêutico , Masculino , CamundongosRESUMO
Obese patients are at higher risk of developing acute respiratory distress syndrome (ARDS); however, their survival rates are also higher compared to those of similarly ill non-obese patients. We hypothesized that obesity would not only prevent lung inflammation, but also reduce remodeling in moderate endotoxin-induced acute lung injury (ALI). Obesity was induced by early postnatal overfeeding in Wistar rats in which the litter size was reduced to 3 pups/litter (Obese, n = 18); Control animals (n = 18) were obtained from unculled litters. On postnatal day 150, Control, and Obese animals randomly received E. coli lipopolysaccharide (ALI) or saline (SAL) intratracheally. After 24 h, echocardiography, lung function and morphometry, and biological markers in lung tissue were evaluated. Additionally, mediator expression in neutrophils and macrophages obtained from blood and bronchoalveolar lavage fluid (BALF) was analyzed. Compared to Control-SAL animals, Control-ALI rats showed no changes in echocardiographic parameters, increased lung elastance and resistance, higher monocyte phagocytic capacity, collagen fiber content, myeloperoxidase (MPO) activity, and levels of interleukin (IL-6), tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-ß, and type III (PCIII), and I (PCI) procollagen in lung tissue, as well as increased expressions of TNF-α and monocyte chemoattractant protein (MCP)-1 in blood and BALF neutrophils. Monocyte (blood) and macrophage (adipose tissue) phagocytic capacities were lower in Obese-ALI compared to Control-ALI animals, and Obese animals exhibited reduced neutrophil migration compared to Control. Obese-ALI animals, compared to Obese-SAL, exhibited increased interventricular septum thickness (p = 0.003) and posterior wall thickness (p = 0.003) and decreased pulmonary acceleration time to pulmonary ejection time ratio (p = 0.005); no changes in lung mechanics, IL-6, TNF-α, TGF-ß, PCIII, and PCI in lung tissue; increased IL-10 levels in lung homogenate (p = 0.007); reduced MCP-1 expression in blood neutrophils (p = 0.009); decreased TNF-α expression in blood (p = 0.02) and BALF (p = 0.008) neutrophils; and increased IL-10 expression in monocytes (p = 0.004). In conclusion, after endotoxin challenge, obese rats showed less deterioration of lung function, secondary to anti-inflammatory and anti-fibrotic effects, as well as changes in neutrophil and monocyte/macrophage phenotype in blood and BALF compared to Control rats.
Assuntos
Lesão Pulmonar Aguda/fisiopatologia , Obesidade/fisiopatologia , Pneumonia/fisiopatologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/etiologia , Animais , Líquido da Lavagem Broncoalveolar , Quimiotaxia de Leucócito , Colágeno/metabolismo , Citocinas/biossíntese , Citocinas/genética , Feminino , Fibrose , Regulação da Expressão Gênica , Septos Cardíacos/patologia , Lipopolissacarídeos/toxicidade , Pulmão/patologia , Pulmão/fisiopatologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Neutrófilos/imunologia , Neutrófilos/metabolismo , Obesidade/complicações , Hipernutrição/complicações , Peroxidase/análise , Fagocitose , Pneumonia/induzido quimicamente , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/fisiopatologia , Ratos , Ratos WistarRESUMO
PURPOSE: Ouabain, an Na+/K+-ATPase inhibitor hormone, presents immunomodulatory actions, including anti-inflammatory effect on acute inflammation models. METHODS: In the present study, the effect of ouabain in a model of allergic airway inflammation induced by ovalbumin (OVA) was assessed. RESULTS: Initially, it was observed that ouabain treatment inhibited cellular migration induced by OVA on bronchoalveolar lavage fluid (BALF), mostly granulocytes, without modulating macrophage migration. In addition, it was observed, by flow cytometry, that ouabain reduces CD3high lymphocytes cells on BALF. Furthermore, treatment with ouabain decreased IL-4 and IL-13 levels on BALF. Ouabain also promoted pulmonary histological alterations, including decreased cell migration into peribronchiolar and perivascular areas, and reduced mucus production in bronchioles regions observed through hematoxylin-eosin (HE) and by periodic acid-Schiff stain, respectively. Allergic airway inflammation is characterized by high OVA-specific IgE serum titer. This parameter was also reduced by the treatment with ouabain. CONCLUSIONS: Therefore, our data demonstrate that ouabain negatively modulates allergic airway inflammation induced by OVA.