Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(24)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302346

RESUMO

Indoor Positioning Systems (IPSs) are used to locate mobile devices in indoor environments. Model-based IPSs have the advantage of not having an exhausting training and signal characterization of the environment, as required by the fingerprint technique. However, most model-based IPSs are done using fixed model parameters, treating the whole scenario as having a uniform signal propagation. This might work for most small scale experiments, but not for larger scenarios. In this paper, we propose PoDME (Positioning using Dynamic Model Estimation), a model-based IPS that uses dynamic parameters that are estimated based on the location the signal was sent. More specifically, we use the set of anchor nodes that received the signal sent by the mobile node and their signal strengths, to estimate the best local values for the log-distance model parameters. Also, since our solution depends highly on the selected anchor nodes to use on the position computation, we propose a novel method for choosing the three best anchor nodes. Our method is based on several data analysis executed on a large-scale, Bluetooth-based, real-world experiment and it chooses not only the nearest anchor but also the ones that benefit our least-square-based position computation. Our solution achieves a position estimation error of 3 m, which is 17% better than a fixed-parameters model from the literature.

2.
Sensors (Basel) ; 19(23)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795187

RESUMO

In vehicular ad hoc networks (VANets), a precise localization system is a crucial factor for several critical safety applications. The global positioning system (GPS) is commonly used to determine the vehicles' position estimation. However, it has unwanted errors yet that can be worse in some areas, such as urban street canyons and indoor parking lots, making it inaccurate for most critical safety applications. In this work, we present a new position estimation method called cooperative vehicle localization improvement using distance information (CoVaLID), which improves GPS positions of nearby vehicles and minimize their errors through an extended Kalman filter to execute Data Fusion using GPS and distance information. Our solution also uses distance information to assess the position accuracy related to three different aspects: the number of vehicles, vehicle trajectory, and distance information error. For that purpose, we use a weighted average method to put more confidence in distance information given by neighbors closer to the target. We implement and evaluate the performance of CoVaLID using real-world data, as well as discuss the impact of different distance sensors in our proposed solution. Our results clearly show that CoVaLID is capable of reducing the GPS error by 63%, and 53% when compared to the state-of-the-art VANet location improve (VLOCI) algorithm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA