RESUMO
When colonizing new ranges, plant populations may benefit from the absence of the checks imposed by the enemies, herbivores, and pathogens that regulated their numbers in their original range. Therefore, rates of plant damage or infestation by natural enemies are expected to be lower in the new range. Exposing both non-native and native plant populations in the native range, where native herbivores are present, can be used to test whether resistance mechanisms have diverged between populations. Datura stramonium is native to the Americas but widely distributed in Spain, where populations show lower herbivore damage than populations in the native range. We established experiments in two localities in the native range (Mexico), exposing two native and two non-native D. stramonium populations to natural herbivores. Plant performance differed between the localities, as did the abundance of the main specialist herbivore, Lema daturaphila. In Teotihuacán, where L. daturaphila is common, native plants had significantly more adult beetles and herbivore damage than non-native plants. The degree of infestation by the specialist seed predator Trichobaris soror differed among populations and between sites, but the native Ticumán population always had the lowest level of infestation. The Ticumán population also had the highest concentration of the alkaloid scopolamine. Scopolamine was negatively related to the number of eggs deposited by L. daturaphila in Teotihuacán. There was among-family variation in herbivore damage (resistance), alkaloid content (scopolamine), and infestation by L. daturaphila and T. soror, indicating genetic variation and potential for further evolution. Although native and non-native D. stramonium populations have not yet diverged in plant resistance/constitutive defense, the differences between ranges (and the two experimental sites) in the type and abundance of herbivores suggest that further research is needed on the role of resource availability and adaptive plasticity, specialized metabolites (induced, constitutive), and the relationship between genealogical origin and plant defense in both ranges.
RESUMO
Tuta absoluta (Meyrick) is a devastating pest of tomato that has invaded many regions of the world. To date, it has not been detected in North America, but the pest reached Costa Rica in 2014 and seriously threatens the southern, southwestern, and western United States including California. Although the primary host of T. absoluta is tomato, several other species of Solanaceae may serve as alternative hosts. In our study, we aimed to assess the potential risk that other solanaceous crops and wild species that are often present in and around California tomato fields could serve as hosts. To accomplish this, we conducted greenhouse and laboratory studies to determine whether two common cultivars of fresh market tomato, two common cultivars of tomatillo, and the wild plants, Solanum nigrum L., Solanum sarrachoides (Sendtner), and Datura stramonium L., are suitable hosts for reproduction and development of the pest. According to our results, D. stramonium and tomatillo were unable to sustain T. absoluta larval development in either greenhouse studies or laboratory studies, and therefore, they are not likely to contribute to T. absoluta establishment during an invasion. On the contrary, the two other solanaceous weeds, S. nigrum and S. sarrachoides, share a similar potential as tomato to be reproductive and developmental hosts of T. absoluta, and might play an important role in the establishment of the pest in California.