RESUMO
Multiple mitochondrial dysfunction syndrome type 3 (MMDS3) is a rare mitochondrial leukoencephalopathy caused by biallelic pathogenic variants in IBA57. Here, we describe a homozygous variant in IBA57, (NM_001010867.2): c.310G>T (p.Gly104Cys), in a 2-month-old infant of Cuban descent who presented with a one-month history of progressive hypotonia, weakness, and episodes of upgaze deviation. This is the first report of a patient homozygous for this variant and the first report of MMDS3 in a patient of Hispanic descent described to our knowledge. Using in silico tools, we found that the variant resides in a putative mutational hotspot located in the neighborhood of a key active ligand required for iron-sulfur cluster coordination. In addition, while previous case reports/series have reported the variable phenotypic features of the disease, the incidence of these features across the literature has not been well described. In order to construct a clearer global picture of the typical presentation of MMDS3, we reviewed 52 cases across the literature with respect to their clinical, biochemical, genotypic, and neuroradiographic features.
Assuntos
Leucoencefalopatias , Lactente , Humanos , Homozigoto , Mutação , Mitocôndrias , Hispânico ou LatinoRESUMO
Synthetic iron-sulfur cubanes are models for biological cofactors, which are essential to delineate oxidation states in the more complex enzymatic systems. However, a complete series of [Fe4S4]n complexes spanning all redox states accessible by 1-electron transformations of the individual iron atoms (n = 0-4+) has never been prepared, deterring the methodical comparison of structure and spectroscopic signature. Here, we demonstrate that the use of a bulky arylthiolate ligand promoting the encapsulation of alkali-metal cations in the vicinity of the cubane enables the synthesis of such a series. Characterization by EPR, 57Fe Mössbauer spectroscopy, UV-visible electronic absorption, variable-temperature X-ray diffraction analysis, and cyclic voltammetry reveals key trends for the geometry of the Fe4S4 core as well as for the Mössbauer isomer shift, which both correlate systematically with oxidation state. Furthermore, we confirm the S = 4 electronic ground state of the most reduced member of the series, [Fe4S4]0, and provide electrochemical evidence that it is accessible within 0.82 V from the [Fe4S4]2+ state, highlighting its relevance as a mimic of the nitrogenase iron protein cluster.
Assuntos
Materiais Biomiméticos , Coenzimas , Hidrocarbonetos , Ferro , Nitrogenase , Enxofre , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Coenzimas/síntese química , Coenzimas/química , Hidrocarbonetos/síntese química , Hidrocarbonetos/química , Ferro/química , Nitrogenase/química , Oxirredução , Enxofre/químicaRESUMO
DFT calculations were used to obtain parameters compatible with the CHARMM36 force field for iron-sulfur clusters (Fe-S) of the type [Fe4S4]2+ that are coordinated to dissimilatory adenosine-5'-phosphosulfate reductase (APSrAB). Classical molecular dynamics (MD) simulations were performed on two APSrAB systems to validate the parameters and verify the stability of the studied systems. The time analysis of the parameters inserted into the force field was in reasonable agreement with the experimental X-ray diffraction data. The analysis of the time evolution of the studied systems indicated that these systems and, in particular, the clusters in their respective cavities had a good stability and were in agreement with what was observed in previous works. The parameters obtained provide the basis for the study of APSrAB as well as other systems that contain [Fe4S4]2+ through the CHARMM36 force field.
Assuntos
Simulação de Dinâmica Molecular , Enxofre , Adenosina , Ferro , OxirredutasesRESUMO
BACKGROUND: Ferredoxins are small iron-sulfur proteins that participate as electron donors in various metabolic pathways. They are recognized substrates of ferredoxin-NADP+ reductases (FNR) in redox metabolisms in mitochondria, plastids, and bacteria. We previously found a plastidic-type FNR in Leptospira interrogans (LepFNR), a parasitic bacterium of animals and humans. Nevertheless, we did not identify plant-type ferredoxins or flavodoxins, the common partners of this kind of FNR. METHODS: Sequence alignment, phylogenetical analyses and structural modeling were performed for the identification of a 2[4Fe4S] ferredoxin (LepFd2) as a putative redox partner of LepFNR in L. interrogans. The gene encoding LepFd2 was cloned and the protein overexpressed and purified. The functional properties of LepFd2 and LepFNR-LepFd2 complex were analyzed by kinetic and mutagenesis studies. RESULTS: We succeeded in expressing and purifying LepFd2 with its FeS cluster properly bound. We found that LepFd2 exchanges electrons with LepFNR. Moreover, a unique structural subdomain of LepFNR (loop P75-Y91), was shown to be involved in the recognition and binding of LepFd2. This structural subdomain is not found in other FNR homologs. CONCLUSIONS: We report for the first time a redox pair in L. interrogans in which a plastidic FNR exchanges electron with a bacterial 2[4Fe4S] ferredoxin. We characterized this reaction and proposed a model for the productive LepFNR-LepFd2 complex. GENERAL SIGNIFICANCE: Our findings suggest that the interaction of LepFNR with the iron-sulfur protein would be different from the one previously described for the homolog enzymes. This knowledge would be useful for the design of specific LepFNR inhibitors.
Assuntos
Ferredoxina-NADP Redutase/metabolismo , Ferredoxinas/metabolismo , Leptospira interrogans/enzimologia , Sequência de Aminoácidos , Ferredoxina-NADP Redutase/química , Ferredoxinas/química , Modelos Moleculares , Oxirredução , Filogenia , Conformação Proteica , Alinhamento de SequênciaRESUMO
Molybdenum-dependent nitrogenases catalyze the transformation of dinitrogen into ammonia under ambient conditions. The active site (FeMo cofactor) is the structurally and electronically complex weak-field metal cluster [MoFe7S9C] built of Fe4S3 and MoFe3S3C portions connected by three sulfur bridges and containing an interstitial carbon atom centered in an Fe6 trigonal prism. Chemical synthesis of this cluster is a major challenge in biomimetic inorganic chemistry. One synthetic approach of core ligand metathesis has been developed based on the design and synthesis of unprecedented incomplete ([(Tp*)WFe2S3Q3]-) and complete ([(Tp*)WFe3S3Q4]2-) cubane-type clusters containing bridging halide (Q = halide). These clusters are achieved by template-assisted assembly in the presence of sodium benzophenone ketyl reductant; products are controlled by reaction stoichiometry. Incomplete cubane clusters are subject to a variety of metathesis reactions resulting in substitution of a µ2-bridging ligand with other bridges such as N3-, MeO-, and EtS- Reactions of complete cubanes with Me3SiN3 and S8 undergo a redox metathesis process and lead to core ligand displacement and formation of [(Tp*)WFe3S3(µ3-Q)Cl3]- (Q = Me3SiN2-, S2-). This work affords entry to a wide variety of heteroleptic clusters derivable from incomplete and complete cubanes; examples are provided. Among these is the cluster [(Tp*)WFe3S3(µ3-NSiMe3)Cl3]-, one of the very few instances of a synthetic Fe-S cluster containing a light atom (C, N, O) in the core, which constitutes a close mimic of the [MoFe3S3C] fragment in FeMo cofactor. Superposition of them and comparison of metric information disclose a clear structural relationship [Tp* = tris(3,5-dimethyl-1-pyrazolyl)hydroborate(1-)].