Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hippocampus ; 33(8): 906-921, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36938755

RESUMO

Experimental manipulations that interfere with the functional expression of N-methyl-D-aspartate receptors (NMDARs) during prenatal neurodevelopment or critical periods of postnatal development are models that mimic behavioral and neurophysiological abnormalities of schizophrenia. Blockade of NMDARs with MK-801 during early postnatal development alters glutamate release and impairs the induction of NMDAR-dependent long-term plasticity at the CA1 area of the hippocampus. However, it remains unknown if other forms of hippocampal plasticity, such as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated short- and long-term potentiation, are compromised in response to neonatal treatment with MK-801. Consistent with this tenet, short- and long-term potentiation between dentate gyrus axons, the mossy fibers (MF), onto CA3 pyramidal cells (CA3 PCs) are mediated by AMPARs. By combining whole-cell patch clamp and extracellular recordings, we have demonstrated that transient blockade of NMDARs during early postnatal development induces a series of pre- and postsynaptic modifications at the MF-CA3 synapse. We found reduced glutamate release from the mossy boutons, increased paired-pulse ratio, and reduced AMPAR-mediated MF LTP levels. At the postsynaptic level, we found an altered NMDA/AMPA ratio and dysregulation of several potassium conductances that increased the excitability of CA3 PCs. In addition, MK-801-treated animals exhibited impaired spatial memory retrieval in the Barnes maze task. Our data demonstrate that transient hypofunction of NMDARs impacts NMDAR-independent forms of synaptic plasticity of the hippocampus.


Assuntos
Potenciação de Longa Duração , Receptores de N-Metil-D-Aspartato , Animais , Potenciação de Longa Duração/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Fibras Musgosas Hipocampais/fisiologia , Maleato de Dizocilpina/farmacologia , Células Piramidais/fisiologia , Hipocampo/metabolismo , Sinapses/fisiologia , Glutamatos , Transmissão Sináptica/fisiologia
2.
Brain Behav Immun ; 105: 67-81, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35803480

RESUMO

The epidemiological association between bacterial or viral maternal infections during pregnancy and increased risk for developing psychiatric disorders in offspring is well documented. Numerous rodent and non-human primate studies of viral- or, to a lesser extent, bacterial-induced maternal immune activation (MIA) have documented a series of neurological alterations that may contribute to understanding the pathophysiology of schizophrenia and autism spectrum disorders. Long-term neuronal and behavioral alterations are now ascribed to the effect of maternal proinflammatory cytokines rather than the infection itself. However, detailed electrophysiological alterations in brain areas relevant to psychiatric disorders, such as the dorsal hippocampus, are lacking in response to bacterial-induced MIA. This study determined if electrophysiological and morphological alterations converge in CA1 pyramidal cells (CA1 PC) from the dorsal hippocampus in bacterial-induced MIA offspring. A series of changes in the functional expression of K+ and Na+ ion channels altered the passive and active membrane properties and triggered hyperexcitability of CA1 PC. Contributing to the hyperexcitability, the somatic A-type potassium current (IA) was decreased in MIA CA1 PC. Likewise, the spontaneous glutamatergic and GABAergic inputs were dysregulated and biased toward increased excitation, thereby reshaping the excitation-inhibition balance. Consistent with these findings, the dendritic branching complexity of MIA CA1 PC was reduced. Together, these morphophysiological alterations modify CA1 PC computational capabilities and contribute to explaining cellular alterations that may underlie the cognitive symptoms of MIA-associated psychiatric disorders.


Assuntos
Imunidade , Neurônios , Canais de Potássio , Animais , Transtorno do Espectro Autista/imunologia , Região CA1 Hipocampal/citologia , Regulação para Baixo , Feminino , Neurônios/metabolismo , Canais de Potássio/metabolismo , Gravidez , Células Piramidais/imunologia , Esquizofrenia/imunologia
3.
Neurotoxicology ; 91: 128-139, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35580742

RESUMO

In C57BL/6 J mice, systemic inflammation was induced by administering bacterial LPS (1 mg/kg) intraperitoneally. In response, animals exhibited hypokinesia, piloerection, and a slight decrease in body temperature accompanied by increased serum levels of the proinflammatory cytokine TNF-α. 24 h after the immunogenic challenge, acute cortical slices were prepared, and whole-cell patch-clamp recordings were performed in morphologically identified prelimbic neurons of the mice's prefrontal cortex. Electrophysiologic alterations included changes in the kinetics parameters of the fast-inactivating sodium and slow-inactivating potassium currents. In current-clamp mode, our recordings revealed alterations in several conductances that shape the intrinsic excitability of prelimbic neurons. The action potential exhibited changes in latency, amplitude, and the rheobase current to elicit firing discharge. Likewise, phase plots of the action potentials uncovered alterations in the repetitive firing of prelimbic neurons. Consistent with these changes, the afterhyperpolarization conductance and the slowly decaying, calcium-dependent after-hyperpolarization current that follows an action potential were decreased in response to systemic LPS. Our data demonstrate that immune activation alters the ionic currents that shape the intrinsic excitability and predicts dysregulation of non-synaptic forms of neuronal plasticity modulated by the intrinsic excitability of prefrontal cortex neurons.


Assuntos
Potássio , Sódio , Potenciais de Ação/fisiologia , Animais , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Potássio/fisiologia
4.
Br J Pharmacol ; 179(8): 1695-1715, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34791647

RESUMO

BACKGROUND AND PURPOSE: Dysregulation of dopaminergic transmission combined with transient hypofunction of N-methyl-d-aspartate receptors (NMDARs) is a key mechanism that may underlie cognitive symptoms of schizophrenia. EXPERIMENTAL APPROACH: Therefore, we aimed to identify electrophysiologic alterations in animals neonatally treated with the NMDA receptor antagonist, MK-801, or with saline solution. KEY RESULTS: Patch-clamp whole-cell recordings from MK-801-treated animals revealed altered passive and active electrophysiologic properties compared with CA1 pyramidal cells from saline-treated animals, including up-regulation of the K+ inward-rectifier conductance and fast-inactivating and slow/non-inactivating K+ currents. Up-regulation of these membrane ionic currents reduced the overall excitability and altered the firing properties of CA1 pyramidal cells. We also explored the capability of cells treated with MK-801 to express intrinsic excitability potentiation, a non-synaptic form of hippocampal plasticity associated with cognition and memory formation. CA1 pyramidal cells from animals treated with MK-801 were unable to convey intrinsic excitability potentiation and had blunted synaptic potentiation. Furthermore, MK-801-treated animals also exhibited reduced cognitive performance in the Barnes maze task. Notably, activation of D1/D5 receptors with SKF-38,393 partially restored electrophysiologic alterations caused by neonatal treatment with MK-801. CONCLUSION AND IMPLICATIONS: Our results offer a molecular and mechanistic explanation based on dysregulation of glutamatergic transmission, in addition to dopaminergic transmission, that may contribute to the understanding of the cognitive deterioration associated with schizophrenia.


Assuntos
Maleato de Dizocilpina , Receptores de Dopamina D1 , Receptores de Dopamina D5 , Receptores de N-Metil-D-Aspartato , Animais , Maleato de Dizocilpina/farmacologia , Dopamina/farmacologia , Hipocampo/metabolismo , Neurônios/metabolismo , Células Piramidais/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D5/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica
5.
Int J Mol Sci ; 22(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067824

RESUMO

Pyramidal neurons in the medial prefrontal cortical layer 2/3 are an essential contributor to the cellular basis of working memory; thus, changes in their intrinsic excitability critically affect medial prefrontal cortex (mPFC) functional properties. Transient Receptor Potential Melastatin 4 (TRPM4), a calcium-activated nonselective cation channel (CAN), regulates the membrane potential in a calcium-dependent manner. In this study, we uncovered the role of TRPM4 in regulating the intrinsic excitability plasticity of pyramidal neurons in the mouse mPFC layer of 2/3 using a combination of conventional and nystatin perforated whole-cell recordings. Interestingly, we found that TRPM4 is open at resting membrane potential, and its inhibition increases input resistance and hyperpolarizes membrane potential. After high-frequency stimulation, pyramidal neurons increase a calcium-activated non-selective cation current, increase the action potential firing, and the amplitude of the afterdepolarization, these effects depend on intracellular calcium. Furthermore, pharmacological inhibition or genetic silencing of TRPM4 reduces the firing rate and the afterdepolarization after high frequency stimulation. Together, these results show that TRPM4 plays a significant role in the excitability of mPFC layer 2/3 pyramidal neurons by modulating neuronal excitability in a calcium-dependent manner.


Assuntos
Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo , Canais de Cátion TRPM/metabolismo , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/patologia , Canais de Cátion TRPM/fisiologia
6.
Front Cell Neurosci ; 11: 61, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28337126

RESUMO

Neurons from many brain regions display intrinsic subthreshold theta-resonance, responding preferentially to theta-frequency oscillatory stimuli. Resonance may contribute to selective communication among neurons and to orchestrate brain rhythms. CA1 pyramidal neurons receive theta activity, generating place fields. In these neurons the expression of perithreshold frequency preference is controversial, particularly in the spiking regime, with evidence favoring either non-resonant (integrator-like) or resonant behavior. Perithreshold dynamics depends on the persistent Na+ current INaP developing above -70 mV and the muscarine-sensitive K+ current IM activating above -60 mV. We conducted current and voltage clamp experiments in slices to investigate perithreshold excitability of CA1 neurons under oscillatory stimulation. Around 20% of neurons displayed perithreshold resonance that is expressed in spiking. The remaining neurons (~80%) acted as low-pass filters lacking frequency preference. Paired voltage clamp measurement of INaP and IM showed that perithreshold activation of IM is in general low while INaP is high enough to depolarize neurons toward threshold before resonance expression, explaining the most abundant non-resonant perithreshold behavior. Partial blockade of INaP by pharmacological tools or dynamic clamp changed non-resonant to resonant behavior. Furthermore, shifting IM activation toward hyperpolarized potentials by dynamic clamp also transformed non-resonant neurons into resonant ones. We propose that the relative levels of INaP and IM control perithreshold behavior of CA1 neurons constituting a gating mechanism for theta resonance in the spiking regime. Both currents are regulated by intracellular signaling and neuromodulators which may allow dynamic switching of perithreshold behavior between resonant and non-resonant.

7.
Neurobiol Learn Mem ; 130: 77-82, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26860438

RESUMO

Patients with posttraumatic stress disorder (PTSD) show hypo-active ventromedial prefrontal cortices (vmPFC) that correlate with their impaired ability to discriminate between safe and dangerous contexts and cues. Previously, we found that auditory fear conditioning depresses the excitability of neurons populating the homologous structure in rodents, the infralimbic cortex (IL). However, it is undetermined if IL depression was mediated by the cued or contextual information. The objective of this study was to examine whether contextual information was sufficient to depress IL neuronal excitability. After exposing rats to context-alone, pseudoconditioning, or contextual fear conditioning, we used whole-cell current-clamp recordings to examine the excitability of IL neurons in prefrontal brain slices. We found that contextual fear conditioning reduced IL neuronal firing in response to depolarizing current steps. In addition, neurons from contextual fear conditioned animals showed increased slow afterhyperpolarization potentials (sAHPs). Moreover, the observed changes in IL excitability correlated with contextual fear expression, suggesting that IL depression may contribute to the encoding of contextual fear.


Assuntos
Condicionamento Clássico/fisiologia , Medo/fisiologia , Sistema Límbico/fisiologia , Potenciais de Ação/fisiologia , Animais , Extinção Psicológica/fisiologia , Masculino , Neurônios/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
8.
Front Behav Neurosci ; 8: 96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24715857

RESUMO

Fear extinction correlates with increased infralimbic (IL) neuronal excitability. Since small conductance Ca(2+)-dependent K(+) (SK) channels modulate neuronal excitability and certain types of learning and memory, pharmacological modulation of SK channels could be used to regulate IL excitability and fear extinction. To test this, we first determined the effect of blocking SK channels with apamin on the intrinsic excitability of IL pyramidal neurons in brain slices. In whole-cell patch-clamp recordings, apamin increased the number of spikes evoked by a depolarizing current pulse, increased the firing frequency, and reduced the fast afterhyperpolarizing potential (fAHP) indicating that blockade of SK channels could be used to enhance the intrinsic excitability of IL neurons. Next, we assessed whether SK channels in IL regulate extinction of conditioned fear by infusing apamin into IL of fear conditioned rats prior to extinction training. Apamin infusion did not affect conditioned freezing at the beginning of the extinction session or within-session extinction. However, the following day, apamin-infused rats showed significantly less conditioned freezing. To further examine the importance of SK channels in IL in fear extinction, we assessed the effect of the SK channel activator DCEBIO on IL neuronal excitability and fear extinction. Activation of SK channels with DCEBIO decreased the number of evoked spikes, reduced the firing frequency, and enhanced the fAHP of IL neurons. Infusion of DCEBIO into IL prior to fear extinction impaired recall of fear extinction without affecting acquisition of extinction. Taken together, these findings suggest that SK channels are involved in regulating IL excitability and extinction-induced plasticity. Therefore, SK channels are a potential target for the development of new pharmacological treatments to facilitate extinction in patients suffering from anxiety disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA