Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 13(1): 2327368, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38531008

RESUMO

The COVID-19 pandemic presents a major threat to global public health. Several lines of evidence have shown that the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), along with two other highly pathogenic coronaviruses, SARS-CoV and Middle East Respiratory Syndrome (MERS-CoV) originated from bats. To prevent and control future coronavirus outbreaks, it is necessary to investigate the interspecies infection and pathogenicity risks of animal-related coronaviruses. Currently used infection models, including in vitro cell lines and in vivo animal models, fail to fully mimic the primary infection in human tissues. Here, we employed organoid technology as a promising new model for studying emerging pathogens and their pathogenic mechanisms. We investigated the key host-virus interaction patterns of five human coronaviruses (SARS-CoV-2 original strain, Omicron BA.1, MERS-CoV, HCoV-229E, and HCoV-OC43) in different human respiratory organoids. Five indicators, including cell tropism, invasion preference, replication activity, host response and virus-induced cell death, were developed to establish a comprehensive evaluation system to predict coronavirus interspecies infection and pathogenicity risks. Using this system, we further examined the pathogenicity and interspecies infection risks of three SARS-related coronaviruses (SARSr-CoV), including WIV1 and rRsSHC014S from bats, and MpCoV-GX from pangolins. Moreover, we found that cannabidiol, a non-psychoactive plant extract, exhibits significant inhibitory effects on various coronaviruses in human lung organoid. Cannabidiol significantly enhanced interferon-stimulated gene expression but reduced levels of inflammatory cytokines. In summary, our study established a reliable comprehensive evaluation system to analyse infection and pathogenicity patterns of zoonotic coronaviruses, which could aid in prevention and control of potentially emerging coronavirus diseases.


Assuntos
COVID-19 , Canabidiol , Quirópteros , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Humanos , Pandemias , Canabidiol/farmacologia , SARS-CoV-2
2.
J Virol ; 97(2): e0171922, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36688655

RESUMO

Coronavirus disease 2019 (COVID-19), which is caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the most severe emerging infectious disease in the current century. The discovery of SARS-CoV-2-related coronaviruses (SARSr-CoV-2) in bats and pangolins in South Asian countries indicates that SARS-CoV-2 likely originated from wildlife. To date, two SARSr-CoV-2 strains have been isolated from pangolins seized in Guangxi and Guangdong by the customs agency of China, respectively. However, it remains unclear whether these viruses cause disease in animal models and whether they pose a transmission risk to humans. In this study, we investigated the biological features of a SARSr-CoV-2 strain isolated from a smuggled Malayan pangolin (Manis javanica) captured by the Guangxi customs agency, termed MpCoV-GX, in terms of receptor usage, cell tropism, and pathogenicity in wild-type BALB/c mice, human angiotensin-converting enzyme 2 (ACE2)-transgenic mice, and human ACE2 knock-in mice. We found that MpCoV-GX can utilize ACE2 from humans, pangolins, civets, bats, pigs, and mice for cell entry and infect cell lines derived from humans, monkeys, bats, minks, and pigs. The virus could infect three mouse models but showed limited pathogenicity, with mild peribronchial and perivascular inflammatory cell infiltration observed in lungs. Our results suggest that this SARSr-CoV-2 virus from pangolins has the potential for interspecies infection, but its pathogenicity is mild in mice. Future surveillance among these wildlife hosts of SARSr-CoV-2 is needed to monitor variants that may have higher pathogenicity and higher spillover risk. IMPORTANCE SARS-CoV-2, which likely spilled over from wildlife, is the third highly pathogenic human coronavirus. Being highly transmissible, it is perpetuating a pandemic and continuously posing a severe threat to global public health. Several SARS-CoV-2-related coronaviruses (SARSr-CoV-2) in bats and pangolins have been identified since the SARS-CoV-2 outbreak. It is therefore important to assess their potential of crossing species barriers for better understanding of their risk of future emergence. In this work, we investigated the biological features and pathogenicity of a SARSr-CoV-2 strain isolated from a smuggled Malayan pangolin, named MpCoV-GX. We found that MpCoV-GX can utilize ACE2 from 7 species for cell entry and infect cell lines derived from a variety of mammalian species. MpCoV-GX can infect mice expressing human ACE2 without causing severe disease. These findings suggest the potential of cross-species transmission of MpCoV-GX, and highlight the need of further surveillance of SARSr-CoV-2 in pangolins and other potential animal hosts.


Assuntos
COVID-19 , Especificidade de Hospedeiro , Pangolins , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/genética , Linhagem Celular , China , COVID-19/transmissão , COVID-19/virologia , Pulmão/patologia , Pulmão/virologia , Camundongos Transgênicos , Pangolins/virologia , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Suínos , Quirópteros
3.
BMC Genomics ; 19(1): 211, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29558886

RESUMO

BACKGROUND: Ranaviruses (family Iridoviridae, nucleocytoplasmic large DNA viruses) have been reported as promiscuous pathogens of cold-blooded vertebrates. Rana grylio virus (RGV, a ranavirus), from diseased frog Rana grylio with a genome of 105.79 kb and Andrias davidianus ranavirus (ADRV), from diseased Chinese giant salamander (CGS) with a genome of 106.73 kb, contains 99% homologous genes. RESULTS: To uncover the differences in virus replication and host responses under interspecies infection, we analyzed transcriptomes of CGS challenged with RGV and ADRV in different time points (1d, 7d) for the first time. A total of 128,533 unigenes were obtained from 820,858,128 clean reads. Transcriptome analysis revealed stronger gene expression of RGV than ADRV at 1 d post infection (dpi), which was supported by infection in vitro. RGV replicated faster and had higher titers than ADRV in cultured CGS cell line. RT-qPCR revealed the RGV genes including the immediate early gene (RGV-89R) had higher expression level than that of ADRV at 1 dpi. It further verified the acute infection of RGV in interspecies infection. The number of differentially expressed genes and enriched pathways from RGV were lower than that from ADRV, which reflected the variant host responses at transcriptional level. No obvious changes of key components in pathway "Antigen processing and presentation" were detected for RGV at 1 dpi. Contrarily, ADRV infection down-regulated the expression levels of MHC I and CD8. The divergent host immune responses revealed the differences between interspecies and natural infection, which may resulted in different fates of the two viruses. Altogether, these results revealed the differences in transcriptome responses among ranavirus interspecies infection of amphibian and new insights in DNA virus-host interactions in interspecies infection. CONCLUSION: The DNA virus (RGV) not only expressed self-genes and replicated quickly after entry into host under interspecies infection, but also avoided the over-activation of host responses. The strategy could gain time for the survival of interspecies pathogen, and may provide opportunity for its adaptive evolution and interspecies transmission.


Assuntos
Infecções por Vírus de DNA/veterinária , Interações Hospedeiro-Patógeno , Ranavirus/genética , Ranidae , Análise de Sequência de DNA/veterinária , Urodelos , Animais , Infecções por Vírus de DNA/virologia , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Ranidae/genética , Ranidae/virologia , Timo/virologia , Transcriptoma , Urodelos/genética , Urodelos/virologia , Proteínas Virais/genética , Replicação Viral
4.
Trop Anim Health Prod ; 50(4): 773-778, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29264821

RESUMO

Bovine viral diarrhea virus (BVDV) infects ruminants as primary hosts. However, other animals like pigs are susceptible. This study was conducted to investigate seroprevalence and risk factors associated with the detection of BVDV antibodies in pig herds. A total of 1.705 serum samples of 33 finisher herds, from seven Brazilian states, were collected in slaughterhouses. The samples were tested by virus neutralization (VN) test. In total, 5.35% (91/1.705) were positive and 64% (21/33) of the herds had positive animals. A significant association with "trucks are not cleaned and disinfected" and "visitors do not respect 72-h interval between visits to farms" (P < 0.05) was found in association with detection of BVDV-2 antibodies. This study suggests that important biosecurity gaps are present in Brazilian pig farms, as the presence of BVDV antibodies in pigs suggests (direct or indirect) contact with population(s) of ruminant species. Closing biosecurity gaps prevents spread of BVDV and other pathogens such as foot-and-mouth disease virus (FMDV) between pig and ruminant farms. This data should be taken in account by CSF surveillance programs, once cross-reaction in serologic tests between classical swine fever virus (CSFV) and BVDV antibodies has been shown to occur.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Diarreia Viral Bovina Tipo 1/isolamento & purificação , Vírus da Diarreia Viral Bovina Tipo 2/isolamento & purificação , Doenças dos Suínos/epidemiologia , Suínos/virologia , Matadouros , Animais , Brasil/epidemiologia , Bovinos , Estudos Transversais , Fatores de Risco , Estudos Soroepidemiológicos , Testes Sorológicos , Doenças dos Suínos/virologia
5.
Microbiology ; (12)1992.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-684725

RESUMO

avian influenza virus (AIV) can not only infect avian and cause pandemics,but also result infection and initiate pandemics in humans and other mammal animals,crossing the species barrier.There have been some advance in research into the nonspecific species barrier of human respiratory tract against AIV infection and the mechanism of the infection of AIV in humans in recent years.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA