Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biol Psychiatry Glob Open Sci ; 4(5): 100338, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39099729

RESUMO

Background: Psychiatric disorders often emerge during late adolescence/early adulthood, a period with increased susceptibility to socioenvironmental factors that coincides with incomplete parvalbumin interneuron (PVI) development. Stress during this period causes functional loss of PVIs in the ventral hippocampus (vHip), which has been associated with dopamine system overdrive. This vulnerability persists until the appearance of perineuronal nets (PNNs) around PVIs. We assessed the long-lasting effects of adolescent or adult stress on behavior, ventral tegmental area dopamine neuron activity, and the number of PVIs and their associated PNNs in the vHip. Additionally, we tested whether PNN removal in the vHip of adult rats, proposed to reset PVIs to a juvenile-like state, would recreate an adolescent-like phenotype of stress susceptibility. Methods: Male rats underwent a 10-day stress protocol during adolescence or adulthood. Three to 4 weeks poststress, we evaluated behaviors related to anxiety, sociability, and cognition, ventral tegmental area dopamine neuron activity, and the number of PV+ and PNN+ cells in the vHip. Furthermore, adult animals received intra-vHip infusion of ChABC (chondroitinase ABC) to degrade PNNs before undergoing stress. Results: Unlike adult stress, adolescent stress induced anxiety responses, reduced sociability, cognitive deficits, ventral tegmental area dopamine system overdrive, and decreased PV+ and PNN+ cells in the vHip. However, intra-vHip ChABC infusion caused the adult stress to produce changes similar to the ones observed after adolescent stress. Conclusions: Our findings underscore adolescence as a period of heightened vulnerability to the long-lasting impact of stress and highlight the protective role of PNNs against stress-induced damage in PVIs.


In this work, we aimed to go deeper into understanding perineuronal nets (PNNs), a specialized extracellular matrix that evolves and protects inhibitory neurons in the brain, specifically parvalbumin-positive interneurons (PVIs). PVIs are essential in regulating brain activity. PNNs only reach maturity in adulthood, which leaves these interneurons unprotected during early life. To investigate this vulnerability, we conducted experiments in which we exposed adolescent and adult animals to a stress protocol. We observed that adolescent animals exhibited a higher susceptibility to developing changes associated with psychiatric disorders later in life. This susceptibility may stem from the absence of PNN protection around their PVIs. To explore this possibility further, we administered an enzyme into a specific brain region, the ventral hippocampus, of adult animals to selectively remove PNNs and induce an adolescent-like state. When subjected to stress, these animals displayed abnormalities similar to those observed in animals stressed during adolescence. Our findings have significant implications, suggesting that the presence of PNN protection around PVIs may be critical for mitigating stress-related psychiatric disorders.

2.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167178, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38636614

RESUMO

Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by haploinsufficiency of transcription factor 4 (TCF4). In this work, we focused on the cerebral cortex and investigated in detail the progenitor cell dynamics and the outcome of neurogenesis in a PTHS mouse model. Labeling and quantification of progenitors and newly generated neurons at various time points during embryonic development revealed alterations affecting the dynamic of cortical progenitors since the earliest stages of cortex formation in PTHS mice. Consequently, establishment of neuronal populations and layering of the cortex were found to be altered in heterozygotes subjects at birth. Interestingly, defective layering process of pyramidal neurons was partially rescued by reintroducing TCF4 expression using focal in utero electroporation in the cerebral cortex. Coincidentally with a defective dorsal neurogenesis, we found that ventral generation of interneurons was also defective in this model, which may lead to an excitation/inhibition imbalance in PTHS. Overall, sex-dependent differences were detected with more marked effects evidenced in males compared with females. All of this contributes to expand our understanding of PTHS, paralleling the advances of research in autism spectrum disorder and further validating the PTHS mouse model as an important tool to advance preclinical studies.


Assuntos
Córtex Cerebral , Modelos Animais de Doenças , Hiperventilação , Deficiência Intelectual , Neurogênese , Fator de Transcrição 4 , Animais , Fator de Transcrição 4/metabolismo , Fator de Transcrição 4/genética , Feminino , Masculino , Camundongos , Hiperventilação/metabolismo , Hiperventilação/genética , Hiperventilação/patologia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Deficiência Intelectual/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Fácies , Caracteres Sexuais , Interneurônios/metabolismo , Interneurônios/patologia , Células Piramidais/metabolismo , Células Piramidais/patologia , Haploinsuficiência
3.
Schizophr Bull ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525594

RESUMO

BACKGROUND AND HYPOTHESIS: Redox dysregulation has been proposed as a convergent point of childhood trauma and the emergence of psychiatric disorders, such as schizophrenia (SCZ). A critical region particularly vulnerable to environmental insults during adolescence is the ventral hippocampus (vHip). However, the impact of severe stress on vHip redox states and their functional consequences, including behavioral and electrophysiological changes related to SCZ, are not entirely understood. STUDY DESIGN: After exposing adolescent animals to physical stress (postnatal day, PND31-40), we explored social and cognitive behaviors (PND47-49), the basal activity of pyramidal glutamate neurons, the number of parvalbumin (PV) interneurons, and the transcriptomic signature of the vHip (PND51). We also evaluated the impact of stress on the redox system, including mitochondrial respiratory function, reactive oxygen species (ROS) production, and glutathione (GSH) levels in the vHip and serum. STUDY RESULTS: Adolescent-stressed animals exhibited loss of sociability, cognitive impairment, and vHip excitatory/inhibitory (E/I) imbalance. Genome-wide transcriptional profiling unveiled the impact of stress on redox system- and synaptic-related genes. Stress impacted mitochondrial respiratory function and changes in ROS levels in the vHip. GSH and glutathione disulfide (GSSG) levels were elevated in the serum of stressed animals, while GSSG was also increased in the vHip and negatively correlated with sociability. Additionally, PV interneuron deficits in the vHip caused by adolescent stress were associated with oxidative stress. CONCLUSIONS: Our results highlight the negative impact of adolescent stress on vHip redox regulation and mitochondrial function, which are partially associated with E/I imbalance and behavioral abnormalities related to SCZ.

4.
Basic Clin Pharmacol Toxicol ; 134(5): 614-628, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38426366

RESUMO

The brain extracellular matrix (ECM) has garnered increasing attention as a fundamental component of brain function in a predominantly "neuron-centric" paradigm. Particularly, the perineuronal nets (PNNs), a specialized net-like structure formed by ECM aggregates, play significant roles in brain development and physiology. PNNs enwrap synaptic junctions in various brain regions, precisely balancing new synaptic formation and long-term stabilization, and are highly dynamic entities that change in response to environmental stimuli, especially during the neurodevelopmental period. They are found mainly surrounding parvalbumin (PV)-expressing GABAergic interneurons, being proposed to promote PV interneuron maturation and protect them against oxidative stress and neurotoxic agents. This structural and functional proximity underscores the crucial role of PNNs in modulating PV interneuron function, which is critical for the excitatory/inhibitory balance and, consequently, higher-level behaviours. This review delves into the molecular underpinnings governing PNNs formation and degradation, elucidating their functional interactions with PV interneurons. In the broader physiological context and brain-related disorders, we also explore their intricate relationship with other molecules, such as reactive oxygen species and metalloproteinases, as well as glial cells. Additionally, we discuss potential therapeutic strategies for modulating PNNs in brain disorders.


Assuntos
Interneurônios , Parvalbuminas , Parvalbuminas/metabolismo , Interneurônios/metabolismo , Matriz Extracelular/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo
5.
Neuroscience ; 532: 65-78, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37776946

RESUMO

The blockade of 5-HT6 receptors represents an experimental approach that might ameliorate the memory deficits associated with brain disorders, including Alzheimer's disease and schizophrenia. However, the synaptic mechanism by which 5-HT6 receptors control the GABAergic and glutamatergic synaptic transmission is barely understood. In this study, we demonstrate that pharmacological manipulation of 5-HT6 receptors with the specific agonist EMD 386088 (7.4 nM) or the antagonist SB-399885 (300 nM) modulates the field inhibitory postsynaptic potentials of the dorsal hippocampus and controls the strength of the population spike of pyramidal cells. Likewise, pharmacological modulation of 5-HT6 controls the magnitude of paired-pulse inhibition, a phenomenon mediated by GABAergic interneurons acting via GABAA receptors of pyramidal cells. The effects of pharmacological manipulation of the 5-HT6 receptor were limited to GABAergic transmission and did not affect the strength of field excitatory postsynaptic potentials mediated by the Schaffer collaterals axons. Lastly, in a modified version of the Pavlovian autoshaping task that requires the activation of the hippocampal formation, we demonstrated that the anti-amnesic effect induced by the blockade of the 5-HT6 receptor is prevented when the GAT1 transporter is blocked, suggesting that modulation of GABAergic transmission is required for the anti-amnesic properties of 5-HT6 receptor antagonists.


Assuntos
Hipocampo , Receptores de Serotonina , Ratos , Animais , Ratos Wistar , Receptores de Serotonina/metabolismo , Células Piramidais/fisiologia , Transmissão Sináptica/fisiologia , Receptores de GABA-A
8.
Hippocampus ; 33(4): 424-441, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36709408

RESUMO

GABAergic inhibition is critical for the precision of neuronal spiking and the homeostatic regulation of network activity in the brain. Adult neurogenesis challenges network homeostasis because new granule cells (GCs) integrate continuously in the functional dentate gyrus. While developing, adult-born GCs undergo a transient state of enhanced excitability due to the delayed maturation of perisomatic GABAergic inhibition by parvalbumin interneurons (PV-INs). The mechanisms underlying this delayed synaptic maturation remain unknown. We examined the morphology and function of synapses formed by PV-INs onto new GCs over a 2-month interval in young adult mice, and investigated the influence of the synaptic adhesion molecule neuroligin-2 (NL2). Perisomatic appositions of PV-IN terminals onto new GCs were conspicuous at 2 weeks and continued to grow in size to reach a plateau over the fourth week. Postsynaptic knockdown of NL2 by expression of a short-hairpin RNA (shNL2) in new GCs resulted in smaller size of synaptic contacts, reduced area of perisomatic appositions of the vesicular GABA transporter VGAT, and the number of presynaptic active sites. GCs expressing shNL2 displayed spontaneous GABAergic responses with decreased frequency and amplitude, as well as slower kinetics compared to control GCs. In addition, postsynaptic responses evoked by optogenetic stimulation of PV-INs exhibited slow kinetics, increased paired-pulse ratio and coefficient of variation in GCs with NL2 knockdown, suggesting a reduction in the number of active synapses as well as in the probability of neurotransmitter release (Pr ). Our results demonstrate that synapses formed by PV-INs on adult-born GCs continue to develop beyond the point of anatomical growth, and require NL2 for the structural and functional maturation that accompanies the conversion into fast GABAergic transmission.


Assuntos
Proteínas do Tecido Nervoso , Neurônios , Camundongos , Animais , Neurônios/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Interneurônios/fisiologia , Sinapses/fisiologia , Encéfalo/metabolismo
9.
Medicina (B Aires) ; 82 Suppl 3: 57-61, 2022 Aug 30.
Artigo em Espanhol | MEDLINE | ID: mdl-36054859

RESUMO

Autism is a neurodevelopmental disorder with a neurobiological basis, characterized by a qualitative disturbance in social interaction and communication, associated with restricted interests and stereotyped behaviors. The genesis of autism cannot be interpreted through a single theory, and we can't compartmentalize brain areas as the only ones responsible for it. Among the neurobiological bases we can include: deficit in the social reward system, which generates poor social initiative; dysfunctions and disorders of the amygdala and the mirror neuron system, related to compromised empathy and social cognition; abnormalities in the minicolumns related to hyper-systematization; persistent inflammatory phenomena of the central nervous system related to microglia; alterations of neuropeptides such as oxytocin, vasopressin and cortisol, which compromise socialization, and neuronal inhibition disorders, expressed in GABAergic dysfunctions in interneurons, linked to autistic behaviors, epilepsy and sensory phenomena. Understanding the neurobiological bases of autism is complex and there is no single explanation or specific biological marker. However, identifying processes related to social cognition, molecular, inflammatory, neuromodulation mechanisms and bases linked to sensory disorders are fundamental elements.


El autismo es un trastorno del neurodesarrollo de base neurobiológica, caracterizado por una alteración cualitativa en la interacción social y la comunicación, asociado a intereses restringidos y conductas estereotipadas. La génesis del autismo no puede interpretarse a través de una sola teoría, tampoco podemos compartimentalizar áreas del cerebro como únicos responsables de la misma. Entre las bases neurobiológicas podemos incluir: déficit en el sistema de recompensa social, lo cual genera pobre iniciativa social; disfunciones y trastornos de la amígdala y el sistema de neuronas espejo, relacionadas al compromiso en la empatía y la cognición social; anormalidades en las minicolumnas relacionadas con la hiper-sistematización; fenómenos inflamatorios persistentes del sistema nervioso central relacionados a la microglía; alteraciones de los neuropéptidos como oxitocina, vasopresina y cortisol, que comprometen la socialización, y trastornos en la inhibición neuronal, expresados en disfunciones gabaérgicas en las inteneuronas, vinculadas a conductas autistas, epilepsia y fenómenos sensoriales. La comprensión de las bases neurobiológicas del autismo son complejas y no existe un marcador biológico específico. Sin embargo, identificar procesos relacionados a la cognición social, mecanismos moleculares, inflamatorios, de neuromodulación y bases vinculadas a trastornos sensoriales son elementos fundamentales.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Encéfalo/fisiologia , Humanos , Ocitocina , Comportamento Social
10.
Front Synaptic Neurosci ; 14: 945816, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147730

RESUMO

Parkinson's disease is a neurodegenerative ailment generated by the loss of dopamine in the basal ganglia, mainly in the striatum. The disease courses with increased striatal levels of acetylcholine, disrupting the balance among these modulatory transmitters. These modifications disturb the excitatory and inhibitory balance in the striatal circuitry, as reflected in the activity of projection striatal neurons. In addition, changes in the firing pattern of striatal tonically active interneurons during the disease, including cholinergic interneurons (CINs), are being searched. Dopamine-depleted striatal circuits exhibit pathological hyperactivity as compared to controls. One aim of this study was to show how striatal CINs contribute to this hyperactivity. A second aim was to show the contribution of extrinsic synaptic inputs to striatal CINs hyperactivity. Electrophysiological and calcium imaging recordings in Cre-mice allowed us to evaluate the activity of dozens of identified CINs with single-cell resolution in ex vivo brain slices. CINs show hyperactivity with bursts and silences in the dopamine-depleted striatum. We confirmed that the intrinsic differences between the activity of control and dopamine-depleted CINs are one source of their hyperactivity. We also show that a great part of this hyperactivity and firing pattern change is a product of extrinsic synaptic inputs, targeting CINs. Both glutamatergic and GABAergic inputs are essential to sustain hyperactivity. In addition, cholinergic transmission through nicotinic receptors also participates, suggesting that the joint activity of CINs drives the phenomenon; since striatal CINs express nicotinic receptors, not expressed in striatal projection neurons. Therefore, CINs hyperactivity is the result of changes in intrinsic properties and excitatory and inhibitory inputs, in addition to the modification of local circuitry due to cholinergic nicotinic transmission. We conclude that CINs are the main drivers of the pathological hyperactivity present in the striatum that is depleted of dopamine, and this is, in part, a result of extrinsic synaptic inputs. These results show that CINs may be a main therapeutic target to treat Parkinson's disease by intervening in their synaptic inputs.

11.
Exp Brain Res ; 240(10): 2569-2580, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35947168

RESUMO

At present, one of the main therapeutic challenges comprises the development of technologies to improve the life quality of people suffering from different types of body paralysis, through the reestablishment of sensory and motor functions. In this regard, brain-machine interfaces (BMI) offer hope to effectively mitigate body paralysis through the control of paralyzed body parts by brain activity. Invasive BMI use chronic multielectrode implants to record neural activity directly from the brain tissue. While such invasive devices provide the highest amount of usable neural activity for BMI control, they also involve direct damage to the nervous tissue. In the cerebral cortex, high levels of the enzyme NADPH diaphorase (NADPH-d) characterize a particular class of interneurons that regulates neuronal excitability and blood supply. To gain insight into the biocompatibility of invasive BMI, we assessed the impact of chronic implanted tungsten multielectrode bundles on the distribution and morphology of NADPH-d-reactive neurons in the rat frontal cortex. NADPH-d neuronal labeling was correlated with glial response markers and with indices of healthy neuronal activity measured by electrophysiological recordings performed up to 3 months after multielectrode implantation. Chronic electrode arrays caused a small and quite localized structural disturbance on the implanted site, with neuronal loss and glial activation circumscribed to the site of implant. Electrodes remained viable during the entire period of implantation. Moreover, neither the distribution nor the morphology of NADPH-d neurons was altered. Overall, our findings provide additional evidence that tungsten multielectrodes can be employed as a viable element for long-lasting therapeutic BMI applications.


Assuntos
NADPH Desidrogenase , Tungstênio , Animais , Lobo Frontal , Humanos , Microeletrodos , NADP , NADPH Desidrogenase/metabolismo , Neurônios/metabolismo , Paralisia , Ratos
12.
Mov Disord ; 37(8): 1693-1706, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35535012

RESUMO

BACKGROUND: In advanced stages of Parkinson's disease (PD), dyskinesia and motor fluctuations become seriously debilitating and therapeutic options become scarce. Aberrant activity of striatal cholinergic interneurons (SCIN) has been shown to be critical to PD and dyskinesia, but the systemic administration of cholinergic medications can exacerbate extrastriatal-related symptoms. Thus, targeting the mechanisms causing pathological SCIN activity in severe PD with motor fluctuations and dyskinesia is a promising therapeutic alternative. METHODS: We used ex vivo electrophysiological recordings combined with pharmacology to study the alterations in intracellular signaling that contribute to the altered SCIN physiology observed in the 6-hydroxydopamine mouse model of PD treated with levodopa. RESULTS: The altered phenotypes of SCIN of parkinsonian mice during the "off levodopa" state resulting from aberrant Kir/leak and Kv1.3 currents can be rapidly reverted by acute inhibition of cAMP-ERK1/2 signaling. Inverse agonists that inhibit the ligand-independent activity of D5 receptors, like clozapine, restore Kv1.3 and Kir/leak currents and SCIN normal physiology in dyskinetic mice. CONCLUSION: Our work unravels a signaling pathway involved in the dysregulation of membrane currents causing SCIN hyperexcitability and burst-pause activity in parkinsonian mice treated with levodopa (l-dopa). These changes persist during off-medication periods due to tonic mechanisms that can be acutely reversed by pharmacological interventions. Thus, targeting the D5-cAMP-ERK1/2 signaling pathway selectively in SCIN may have therapeutic effects in PD and dyskinesia by restoring the normal SCIN function. © 2022 International Parkinson and Movement Disorder Society.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Animais , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Colinérgicos/metabolismo , Colinérgicos/farmacologia , Colinérgicos/uso terapêutico , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/patologia , Interneurônios/metabolismo , Levodopa/farmacologia , Levodopa/uso terapêutico , Camundongos , Oxidopamina/toxicidade
13.
J Neurosci ; 42(7): 1303-1315, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34933954

RESUMO

How do animals adopt a given behavioral strategy to solve a recurrent problem when several effective strategies are available to reach the goal? Here we provide evidence that striatal cholinergic interneurons (SCINs) modulate their activity when mice must select between different strategies with similar goal-reaching effectiveness. Using a cell type-specific transgenic murine system, we show that adult SCIN ablation impairs strategy selection in navigational tasks where a goal can be independently achieved by adopting an allocentric or egocentric strategy. SCIN-depleted mice learn to achieve the goal in these tasks, regardless of their appetitive or aversive nature, in a similar way as controls. However, they cannot shift away from their initially adopted strategies, as control mice do, as training progresses. Our results indicate that SCINs are required for shaping the probability function used for strategy selection as experience accumulates throughout training. Thus, SCINs may be critical for the resolution of cognitive conflicts emerging when several strategies compete for behavioral control while adapting to environmental demands. Our findings may increase our understanding about the emergence of perseverative/compulsive traits in neuropsychiatric disorders with a reported SCIN reduction, such as Tourette and Williams syndromes.SIGNIFICANCE STATEMENT Selecting the best suited strategy to solve a problem is vital. Accordingly, available strategies must be compared across multiple dimensions, such as goal attainment effectiveness, cost-benefit trade-off, and cognitive load. The striatum is involved in strategy selection when strategies clearly diverge in their goal attainment capacity; however, its role whenever several strategies can be used for goal reaching-therefore making selection dependent on additional strategy dimensions-remains poorly understood. Here, we show that striatal cholinergic interneurons can signal strategy competition. Furthermore, they are required to adopt a given strategy whenever strategies with similar goal attainment capacity compete for behavioral control. Our study suggests that striatal cholinergic dysfunction may result in anomalous resolution of problems whenever complex cognitive valuations are required.


Assuntos
Neurônios Colinérgicos/fisiologia , Corpo Estriado/fisiologia , Interneurônios/fisiologia , Resolução de Problemas/fisiologia , Navegação Espacial/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
Front Neurosci ; 15: 665820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616271

RESUMO

Parkinson's disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) in the midbrain resulting in progressive impairment in cognitive and motor abilities. The physiological and molecular mechanisms triggering dopaminergic neuronal loss are not entirely defined. PD occurrence is associated with various genetic and environmental factors causing inflammation and mitochondrial dysfunction in the brain, leading to oxidative stress, proteinopathy, and reduced viability of dopaminergic neurons. Oxidative stress affects the conformation and function of ions, proteins, and lipids, provoking mitochondrial DNA (mtDNA) mutation and dysfunction. The disruption of protein homeostasis induces the aggregation of alpha-synuclein (α-SYN) and parkin and a deficit in proteasome degradation. Also, oxidative stress affects dopamine release by activating ATP-sensitive potassium channels. The cholinergic system is essential in modulating the striatal cells regulating cognitive and motor functions. Several muscarinic acetylcholine receptors (mAChR) and nicotinic acetylcholine receptors (nAChRs) are expressed in the striatum. The nAChRs signaling reduces neuroinflammation and facilitates neuronal survival, neurotransmitter release, and synaptic plasticity. Since there is a deficit in the nAChRs in PD, inhibiting nAChRs loss in the striatum may help prevent dopaminergic neurons loss in the striatum and its pathological consequences. The nAChRs can also stimulate other brain cells supporting cognitive and motor functions. This review discusses the cholinergic system as a therapeutic target of cotinine to prevent cognitive symptoms and transition to dementia in PD.

15.
J Comp Neurol ; 529(13): 3321-3335, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34008863

RESUMO

Nitrergic neurons (NNs) are inhibitory neurons capable of releasing nitric oxide (NO) that are labeled with nicotinamide adenine dinucleotide phosphate diaphorase histochemistry. The rat primary somatosensory (S1) and motor (M1) cortices are a favorable model to investigate NN populations by comparing their morphology, since these areas share the border of forepaw representation. The distribution of the Type I NN of the forepaw representation in the S1 and M1 cortices of the rat in different laminar compartments and the morphological parameters related to the cell body and dendritic arborization were measured and compared. We observed that the neuronal density in the S1 (130 NN/mm3 ) was higher than the neuronal density in the M1 (119 NN/mm3 ). Most NN neurons were multipolar (S1 with 58%; M1 with 69%), and a minority of the NN neurons were horizontal (S1 with 6%; M1 with 12%). NN found in S1 had a higher verticality index than NN found in M1, and no significant differences were observed for the other morphological parameters. We also demonstrated significant differences in most of the morphological parameters of the NN between different cortical compartments of S1 and M1. Our results indicate that the NN of the forepaw in S1 and M1 corresponds to a neuronal population, where the functionality is independent of the different types of sensory and motor processing. However, the morphological differences found between the cortical compartments of S1 and M1, as well as the higher density of NNs found in S1, indicate that the release of NO varies between the areas.


Assuntos
Membro Anterior/metabolismo , Córtex Motor/metabolismo , Neurônios Nitrérgicos/metabolismo , Córtex Somatossensorial/metabolismo , Animais , Membro Anterior/química , Membro Anterior/inervação , Masculino , Córtex Motor/química , Córtex Motor/citologia , NADP/análise , NADP/metabolismo , Neurônios Nitrérgicos/química , Ratos , Ratos Wistar , Córtex Somatossensorial/química , Córtex Somatossensorial/citologia
16.
Neuroscience ; 467: 201-217, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048797

RESUMO

Before the advent of L-DOPA, the gold standard symptomatic therapy for Parkinson's disease (PD), anticholinergic drugs (muscarinic receptor antagonists) were the preferred antiparkinsonian therapy, but their unwanted side effects associated with impaired extrastriatal cholinergic function limited their clinical utility. Since most patients treated with L-DOPA also develop unwanted side effects such as L-DOPA-induced dyskinesia (LID), better therapies are needed. Recent studies in animal models demonstrate that optogenetic and chemogenetic manipulation of striatal cholinergic interneurons (SCIN), the main source of striatal acetylcholine, modulate parkinsonism and LID, suggesting that restoring SCIN function might serve as a therapeutic option that avoids extrastriatal anticholinergics' side effects. However, it is still unclear how the altered SCIN activity in PD and LID affects the striatal circuit, whereas the mechanisms of action of anticholinergic drugs are still not fully understood. Recent animal model studies showing that SCINs undergo profound changes in their tonic discharge pattern after chronic L-DOPA administration call for a reexamination of classical views of how SCINs contribute to PD symptoms and LID. Here, we review the recent advances on the circuit implications of aberrant striatal cholinergic signaling in PD and LID in an effort to provide a comprehensive framework to understand the effects of anticholinergic drugs and with the aim of shedding light into future perspectives of cholinergic circuit-based therapies.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Animais , Antiparkinsonianos , Antagonistas Colinérgicos , Corpo Estriado , Modelos Animais de Doenças , Humanos , Levodopa , Oxidopamina , Doença de Parkinson/tratamento farmacológico
17.
Mov Disord ; 36(7): 1578-1591, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33547844

RESUMO

BACKGROUND: Enhanced striatal cholinergic interneuron activity contributes to the striatal hypercholinergic state in Parkinson's disease (PD) and to levodopa-induced dyskinesia. In severe PD, dyskinesia and motor fluctuations become seriously debilitating, and the therapeutic strategies become scarce. Given that the systemic administration of anticholinergics can exacerbate extrastriatal-related symptoms, targeting cholinergic interneurons is a promising therapeutic alternative. Therefore, unraveling the mechanisms causing pathological cholinergic interneuron activity in severe PD with motor fluctuations and dyskinesia may provide new molecular therapeutic targets. METHODS: We used ex vivo electrophysiological recordings combined with pharmacological and morphological studies to investigate the intrinsic alterations of cholinergic interneurons in the 6-hydroxydopamine mouse model of PD treated with levodopa. RESULTS: Cholinergic interneurons exhibit pathological burst-pause activity in the parkinsonian "off levodopa" state. This is mediated by a persistent ligand-independent activity of dopamine D1/D5 receptor signaling, involving a cyclic adenosine monophosphate (cAMP) pathway. Dysregulation of membrane ion channels that results in increased inward-rectifier potassium type 2 (Kir2) and decreased leak currents causes the burst pause activity, which can be dampened by pharmacological inhibition of intracellular cAMP. A single challenge with a dyskinetogenic dose of levodopa is sufficient to induce persistent cholinergic interneuron burst-pause firing. CONCLUSION: Our data unravel a mechanism causing aberrant cholinergic interneuron burst-pause activity in parkinsonian mice treated with levodopa. Targeting D5-cAMP signaling and the regulation of Kir2 and leak channels may alleviate parkinsonism and dyskinesia by restoring normal cholinergic interneuron function. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Corpo Estriado , Levodopa , Animais , Colinérgicos/farmacologia , Interneurônios , Levodopa/farmacologia , Camundongos , Oxidopamina/toxicidade
18.
Cereb Cortex ; 31(2): 1046-1059, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33026440

RESUMO

Memory systems ought to store and discriminate representations of similar experiences in order to efficiently guide future decisions. This problem is solved by pattern separation, implemented in the dentate gyrus (DG) by granule cells to support episodic memory formation. Pattern separation is enabled by tonic inhibitory bombardment generated by multiple GABAergic cell populations that strictly maintain low activity levels in granule cells. Somatostatin-expressing cells are one of those interneuron populations, selectively targeting the distal dendrites of granule cells, where cortical multimodal information reaches the DG. Nonetheless, somatostatin cells have very low connection probability and synaptic efficacy with both granule cells and other interneuron types. Hence, the role of somatostatin cells in DG circuitry, particularly in the context of pattern separation, remains uncertain. Here, by using optogenetic stimulation and behavioral tasks in mice, we demonstrate that somatostatin cells are required for the acquisition of both contextual and spatial overlapping memories.


Assuntos
Giro Denteado/citologia , Giro Denteado/metabolismo , Aprendizagem por Discriminação/fisiologia , Memória Episódica , Células Secretoras de Somatostatina/metabolismo , Animais , Giro Denteado/química , Feminino , Ácido Glutâmico/análise , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética/métodos , Somatostatina/análise , Somatostatina/metabolismo , Células Secretoras de Somatostatina/química
19.
Eur J Neurosci ; 53(7): 2100-2116, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32302030

RESUMO

Parkinson's disease (PD) is characterized by a degeneration of nigrostriatal dopaminergic neurons that results in a hypercholinergic state in the striatum. This hypercholinergic state contributes to the clinical signs of PD. However, the mechanisms that underlie this state remain unknown. Cholinergic interneurons (ChIs) are the main source of acetylcholine in the striatum. Many studies have highlighted the importance of their normal physiological activity to guarantee a normal motor control and goal-directed behaviour. Moreover, recent studies with optogenetic and chemogenetic approaches have shown that reducing ChIs activity ameliorates parkinsonian symptoms and modifies L-dopa induced dyskinesia in PD animal models. Here, we review the described alterations in ChIs physiology that may contribute to a hypercholinergic state in PD. The best-established finding is an increase of ChIs intrinsic membrane excitability after dopaminergic denervation of striatum. Understanding the molecular basis of ChIs dysfunction in PD could help to develop new therapeutic tools to restore their normal activity and decrease parkinsonian symptoms, improving life quality of PD patients.


Assuntos
Doença de Parkinson , Animais , Colinérgicos , Neurônios Colinérgicos , Corpo Estriado , Humanos , Interneurônios
20.
Epilepsy Behav ; 121(Pt B): 106935, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32035792

RESUMO

The pathophysiology of epilepsy has been historically grounded on hyperexcitability attributed to the oversimplified imbalance between excitation (E) and inhibition (I) in the brain. The decreased inhibition is mostly attributed to deficits in gamma-aminobutyric acid-containing (GABAergic) interneurons, the main source of inhibition in the central nervous system. However, the cell diversity, the wide range of spatiotemporal connectivity, and the distinct effects of the neurotransmitter GABA especially during development, must be considered to critically revisit the concept of hyperexcitability caused by decreased inhibition as a key characteristic in the development of epilepsy. Here, we will discuss that behind this known mechanism, there is a heterogeneity of GABAergic interneurons with distinct functions and sources, which have specific roles in controlling the neural network activity within the recruited microcircuit and altered network during the epileptogenic process. This article is part of the Special Issue "NEWroscience 2018.


Assuntos
Epilepsia , Ácido gama-Aminobutírico , Neurônios GABAérgicos , Humanos , Interneurônios , Inibição Neural
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA