Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Comput Chem ; 43(16): 1068-1078, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35470908

RESUMO

An approach is developed for the fast calculation of the interacting quantum atoms energy decomposition (IQA) from the information contained in the first order reduced density matrix only. The proposed methodology utilizes an approximate exchange-correlation density from Density Matrix Functional Theory without the need to evaluate the correlation-exchange contribution directly. Instead, weight factors are estimated to decompose the exact Vxc into atomic and pairwise contributions. In this way, the sum of the IQA contributions recovers the energy obtained from the electronic structure calculation. This method can, hence, be applied to obtain atomic contributions in excited states on the same footing as in their ground states using any method that delivers the reduced first-order density matrix. In this way, one can locate chromophores from first principles quantum chemical calculations. Test calculations on the ground and excited states of a set of small molecules indicate that the scaled atomic contributions reproduce vertical electronic transition energies calculated exactly. This approach may be useful to extend the applicability of the IQA approach in the study of large photochemical systems especially when the calculations of the second order reduced density matrices is prohibitive or not possible.

2.
Molecules ; 26(14)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34299473

RESUMO

Resonance-assisted hydrogen bonds (RAHB) are intramolecular contacts that are characterised by being particularly energetic. This fact is often attributed to the delocalisation of π electrons in the system. In the present article, we assess this thesis via the examination of the effect of electron-withdrawing and electron-donating groups, namely -F, -Cl, -Br, -CF3, -N(CH3)2, -OCH3, -NHCOCH3 on the strength of the RAHB in malondialdehyde by using the Quantum Theory of Atoms in Molecules (QTAIM) and the Interacting Quantum Atoms (IQA) analyses. We show that the influence of the investigated substituents on the strength of the investigated RAHBs depends largely on its position within the π skeleton. We also examine the relationship between the formation energy of the RAHB and the hydrogen bond interaction energy as defined by the IQA method of wave function analysis. We demonstrate that these substituents can have different effects on the formation and interaction energies, casting doubts regarding the use of different parameters as indicators of the RAHB formation energies. Finally, we also demonstrate how the energy density can offer an estimation of the IQA interaction energy, and therefore of the HB strength, at a reduced computational cost for these important interactions. We expected that the results reported herein will provide a valuable understanding in the assessment of the energetics of RAHB and other intramolecular interactions.

3.
Chemphyschem ; 22(19): 1976-1988, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34293240

RESUMO

The analysis of the reaction force and its topology has provided a wide range of fruitful concepts in the theory of chemical reactivity over the years, allowing to identify chemically relevant regions along a reaction profile. The reaction force (RF), a projection of the Hellmann-Feynman forces acting on the nuclei of a molecular system onto a suitable reaction coordinate, is partitioned using the interacting quantum atoms approach (IQA). The exact IQA molecular energy decomposition is now shown to open a unique window to identify and quantify the chemical entities that drive or retard a chemical reaction. The RF/IQA coupling offers an extraordinarily detailed view of the type and number of elementary processes that take reactants into products, as tested on two sets of simple reactions.

4.
J Comput Chem ; 41(26): 2266-2277, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32761858

RESUMO

Hydrogen bonds (HB) are arguably the most important noncovalent interactions in chemistry. We study herein how differences in connectivity alter the strength of HBs within water clusters of different sizes. We used for this purpose the interacting quantum atoms energy partition, which allows for the quantification of HB formation energies within a molecular cluster. We could expand our previously reported hierarchy of HB strength in these systems (Phys. Chem. Chem. Phys., 2016, 18, 19557) to include tetracoordinated monomers. Surprisingly, the HBs between tetracoordinated water molecules are not the strongest HBs despite the widespread occurrence of these motifs (e.g., in ice Ih ). The strongest HBs within H2 O clusters involve tricoordinated monomers. Nonetheless, HB tetracoordination is preferred in large water clusters because (a) it reduces HB anticooperativity associated with double HB donors and acceptors and (b) it results in a larger number of favorable interactions in the system. Finally, we also discuss (a) the importance of exchange-correlation to discriminate among the different examined types of HBs within H2 O clusters, (b) the use of the above-mentioned scale to quickly assess the relative stability of different isomers of a given water cluster, and (c) how the findings of this research can be exploited to indagate about the formation of polymorphs in crystallography. Overall, we expect that this investigation will provide valuable insights into the subtle interplay of tri- and tetracoordination in HB donors and acceptors as well as the ensuing interaction energies within H2 O clusters.

5.
Chemistry ; 26(71): 17035-17045, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-32822523

RESUMO

The development of chemical intuition in photochemistry faces several difficulties that result from the inadequacy of the one-particle picture, the Born-Oppenheimer approximation, and other basic ideas used to build models. It is shown herein how real-space approaches can be efficiently used to gain valuable insights in photochemistry through a simple example of red and blue shift effects: the double hypso- and bathochromic shifts in the low-lying valence excited states of (H2 O)2 . It is demonstrated that 1) the use of these techniques allows the perturbative language used in the theory of intermolecular interactions, even in the strongly interacting short-range regime, to be maintained; 2) one and only one molecule is photoexcited in each of the addressed excited states and 3) the electrostatic interaction between the in-the-cluster molecular dipoles provides a fairly intuitive rationalisation of the observed batho- and hypsochromism. The methods exploited and illustrated herein are able to maintain the individuality and properties of the interacting entities in a molecular aggregate, and thereby they allow chemical intuition in general states, at any geometry and using a broad variety of electronic structure methods to be kept and built.

6.
J Mol Model ; 24(8): 201, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29995194

RESUMO

When electronic correlation energy is partitioned topologically, a detailed picture of its distribution emerges, both within atoms and between any two atoms. This methodology allows one to study dispersion beyond its more narrow definition in long-range Rayleigh-Schrödinger perturbation theory. The interacting quantum atoms (IQA) method was applied to MP2/6-31G(d,p) (uncontracted) wave functions of a wide variety of systems: glycine…water (hydration), the ethene dimer (π-π interactions), benzene (aromaticity), cyclobutadiene (antiaromaticity), and NH3BH3 (dative bond). Through the study of molecular complexes it turns out that dispersion energy is either important to a system's stabilization (for the C2H4 dimer) or not important (for Gly…H2O). We have also discovered that the delocalization in benzene lowers the strength of Coulomb repulsion in the bonds, which has been quantified for the first time through IQA. Finally, we showed that the nature of the dative bond is much different from that of a regular covalent bond as it is not destabilized by electronic correlation. Finally, the conclusions obtained for these archetypical systems have implications for the future of the quantum topological force field FFLUX in the simulation of larger systems. Graphical abstract Atomic and bond dynamic correlation energies are now available thanks to IQA. Larger molecules can now be accessed to include resonance and solvation of FFLUX force field.

7.
J Comput Chem ; 37(19): 1753-65, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27237084

RESUMO

The electronic energy partition established by the Interacting Quantum Atoms (IQA) approach is an important method of wavefunction analyses which has yielded valuable insights about different phenomena in physical chemistry. Most of the IQA applications have relied upon approximations, which do not include either dynamical correlation (DC) such as Hartree-Fock (HF) or external DC like CASSCF theory. Recently, DC was included in the IQA method by means of HF/Coupled-Cluster (CC) transition densities (Chávez-Calvillo et al., Comput. Theory Chem. 2015, 1053, 90). Despite the potential utility of this approach, it has a few drawbacks, for example, it is not consistent with the calculation of CC properties different from the total electronic energy. To improve this situation, we have implemented the IQA energy partition based on CC Lagrangian one- and two-electron orbital density matrices. The development presented in this article is tested and illustrated with the H2 , LiH, H2 O, H2 S, N2 , and CO molecules for which the IQA results obtained under the consideration of (i) the CC Lagrangian, (ii) HF/CC transition densities, and (iii) HF are critically analyzed and compared. Additionally, the effect of the DC in the different components of the electronic energy in the formation of the T-shaped (H2 )2 van der Waals cluster and the bimolecular nucleophilic substitution between F(-) and CH3 F is examined. We anticipate that the approach put forward in this article will provide new understandings on subjects in physical chemistry wherein DC plays a crucial role like molecular interactions along with chemical bonding and reactivity. © 2016 Wiley Periodicals, Inc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA