Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Reprod ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160783

RESUMO

KEY MESSAGE: Inheritance of the presence/absence of seeds in Annona squamosa is mediated by a single fully recessive gene and is caused by a deletion of the INNER NO OUTER (INO) locus. For some fruits, seedless varieties are desirable for consumption and processing. In the sugar apple tree (Annona squamosa L.), the seedless trait in the Thai seedless (Ts) and Brazilian seedless (Bs) accessions was associated with defective ovules and an apparent deletion of the INNER NO OUTER (INO) ovule development gene locus. Segregation analysis of F2 and backcross descendants of crosses of Bs to fertile wild-type varieties in this species with a multi-year generation time showed that seedlessness was recessive and controlled by a single locus. Comparison of whole genome sequence of a wild-type plant and a third accession, Hawaiian seedless (Hs), identified a 16 kilobase deletion including INO in this line. Ts and Bs lines were shown to have an identical deletion, indicating a common origin from a single deletion event. Analysis of microsatellite markers could not preclude the possibility that all three seedless accessions are vegetatively propagated clones. The sequence of the deletion site enabled a codominant assay for the wild-type and mutant genes allowing observation of complete cosegregation of the seedless/defective ovule phenotype with the INO deletion, showing maximal separation of less than 3.5 cM. The observed deletion is the only significant difference between the wild-type and Hs line over 587 kilobases, likely encompassing much more than 3.5 cM, showing that the deletion is the cause of seedless trait. The codominant markers and obtained progenies will be useful for introgression of the seedless trait into elite sugar apple lines and into other Annonas through interspecific crossings.

2.
Front Plant Sci ; 13: 1033687, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507385

RESUMO

The rajado seeded Andean bean (Phaseolus vulgaris L.) cultivar BRSMG Realce (striped seed coat) developed by Embrapa expressed a high level of anthracnose resistance, caused by Colletotrichum lindemuthianum, in field and greenhouse screenings. The main goal of this study was to evaluate the inheritance of anthracnose resistance in BRSMG Realce, map the resistance locus or major gene cluster previously named as Co-Realce, identify resistance-related positional genes, and analyze potential markers linked to the resistance allele. F2 plants derived from the cross BRSMG Realce × BRS FC104 (Mesoamerican) and from the cross BRSMG Realce × BRS Notável (Mesoamerican) were inoculated with the C. lindemuthianum races 475 and 81, respectively. The BRSMG Realce × BRS FC104 F2 population was also genotyped using the DArTseq technology. Crosses between BRSMG Realce and BAT 93 (Mesoamerican) were also conducted and resulting F2 plants were inoculated with the C. lindemuthianum races 65 and 1609, individually. The results shown that anthracnose resistance in BRSMG Realce is controlled by a single locus with complete dominance. A genetic map including 1,118 SNP markers was built and shown 78% of the markers mapped at a distances less than 5.0 cM, with a total genetic length of 4,473.4 cM. A major locus (Co-Realce) explaining 54.6% of the phenotypic variation of symptoms caused by the race 475 was identified in Pv04, flanked by the markers snp1327 and snp12782 and 4.48 cM apart each other. These SNPs are useful for marker-assisted selection, due to an estimated selection efficiency of 99.2%. The identified resistance allele segregates independently of the resistance allele Co-33 (Pv04) present in BAT 93. The mapped genomic region with 704,867 bp comprising 63 putative genes, 44 of which were related to the pathogen-host interaction. Based on all these results and evidence, anthracnose resistance in BRSMG Realce should be considered as monogenic, useful for breeding purpose. It is proposed that locus Co-Realce is unique and be provisionally designated as CoPv04R until be officially nominated in accordance with the rules established by the Bean Improvement Cooperative Genetics Committee.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA