RESUMO
Toxoplasmosis is a globally prevalent zoonotic disease with significant clinical implications, including neurotoxoplasmosis, a leading cause of cerebral lesions in AIDS patients. The current pharmacological treatments for toxoplasmosis face clinical limitations, necessitating the urgent development of new therapeutics. Natural sources have yielded diverse bioactive compounds, serving as the foundation for clinically used derivatives. The exploration of marine bacteria-derived natural products has led to marinoquinolines, which feature a pyrroloquinoline core and demonstrate in vitro and in vivo anti-Plasmodium activity. This study investigates the in vitro anti-Toxoplasma gondii potential of six marinoquinoline derivatives. Additionally, it conducts absorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions, and evaluates the in vivo efficacy of one selected compound. The compounds displayed half-maximal effective concentration (EC50) values between 1.31 and 3.78 µM and half-maximal cytotoxic concentration (CC50) values ranging from 4.16 to 30.51 µM, resulting in selectivity indices (SI) from 3.18 to 20.85. MQ-1 exhibiting the highest in vitro SI, significantly reduced tachyzoite numbers in the peritoneum of RH-infected Swiss mice when it was orally administered at 12.5 mg/kg/day for eight consecutive days. Also, MQ-1 significantly reduced the cerebral parasite burden in chronically ME49 infected C57BL/6 mice when it was orally administered at 25 mg/kg/day for 10 consecutive days. These findings underscore the promising anti-T. gondii activity of marinoquinolines and their potential as novel therapeutic agents against this disease.
RESUMO
New Psychoactive Substances (NPSs) are defined as a group of substances produced from molecular modifications of traditional drugs. These molecules represent a public health problem since information about their metabolites and toxicity is poorly understood. N-ethyl pentedrone (NEP) is an NPS that was identified in the illicit market for the first time in the mid-2010s, with four intoxication cases later described in the literature. This study aims to evaluate the metabolic stability of NEP as well as to identify its metabolites using three liver microsomes models. To investigate metabolic stability, NEP was incubated with rat (RLM), mouse (MLM) and human (HLM) liver microsomes and its concentration over time evaluated by liquid chromatography-mass spectrometry. For metabolite identification, the same procedure was employed, but the samples were analyzed by liquid chromatography-high resolution mass spectrometry. Different metabolism profiles were observed depending on the model employed and kinetic parameters were determined. The in vitro NEP elimination half-lives (t1/2) were 12.1, 187 and 770 min for the rat, mouse and human models, respectively. Additionally, in vitro intrinsic clearances (Cl int, in vitro) were 229 for rat, 14.8 for mouse, and 3.6 µL/min/mg in the human model, and in vivo intrinsic clearances (Cl int, in vivo) 128, 58.3, and 3.7 mL/min/kg, respectively. The HLM model had the lowest rate of metabolism when compared to RLM and MLM. Also, twelve NEP metabolites were identified from all models, but at different rates of production.
RESUMO
Fermented soybean grain (FSBG) is considered improper to use as a protein source in animal nutrition, since it is assumed that defects cause changes on its chemical composition and favor mycotoxins production, but chemical composition data does not support this theory and in vivo studies are missing. Thus, this study aimed to evaluate the effects of FSBG in feedlot lamb diets. For that, two types of FSBG (partially fermented and completely fermented, PFSBG and CFSBG) and one standard soybean grain (SSBG) were obtained and evaluated alone or as a component of experimental diets by in vitro and in vivo studies, where FSBG totally replaced SSBG in feedlot lamb diets, which was included in the experimental diets in 17.4% on dry matter basis as protein source. Before the studies, both soybeans were sent to a specialized laboratory where no mycotoxins were detected. As a result, lower DM and carbohydrate contents but higher crude protein, fiber, and indigestible NDF contents were measured in CFSBG than in SSBG. Furthermore, both types of FSBG showed lower digestibility in vitro dry matter (IVDMD) than SSBG when evaluated separately; however, when evaluated in experimental diets, the substitution of SSBG for FSBG did not affect IVDMD. It was also observed that FSBG also had less rumen-degradable protein than SSBG (mean 47.9 vs 86.4%). In the in vivo study, FSBG did not affect nutrient intake, apparent digestibility, or animal performance (i.e., average daily gain and carcass gain). Thus, mycotoxins-free FSBG may be an alternative to totally replace SSBG in feedlot lamb diets.
Assuntos
Alimentos Fermentados , Glycine max , Ovinos , Animais , Ração Animal/análise , Digestão , Dieta/veterinária , Rúmen/metabolismo , Grão Comestível , Ruminantes , Valor Nutritivo , Zea mays/metabolismoRESUMO
Background: This study aimed at improving a real-time polymerase-chain-reaction (qPCR) assay for the detection of Histoplasma capsulatum, a fungal pathogen that can cause severe respiratory infections in humans, in clinical and soil samples. Methods: Primer and probes were in-silico designed, in-silico and in-vitro evaluated including clinical biopsy materials and finally subjected to a real-world application with collected soil samples. Results: Applying the qPCR assay with liver and lung biopsies from 71 patients each, including 59 patients infected with human immunodeficiency virus (HIV), as well as with Sabouraud (SAB) agar culture as the diagnostic reference standard, diagnostic accuracy of the qPCR assay of 100% (5/5) sensitivity and 96% (63/66) specificity for liver samples and 100% (4/4) sensitivity and 94% (63/67) specificity for the lung samples was recorded. When applying the assay with soil samples from caves near of Presidente Figueiredo city, Amazonas, Brazil, one sample from the Maroaga cave was confirmed as positive. Conclusions: The improved qPCR assessed in this study was successful in detecting H. capsulatum with high efficiency and accuracy in in-vitro evaluation, including the identification of the target pathogen in both clinical and environmental samples.
RESUMO
This study evaluated the chemical composition and anti-proliferative activity of essential oils (EOs) obtained by hydrodistillation from seven medicinal plants from Cachicadán, La Libertad Región, Perú. Limonene (0.64 to 44.43%) and linalool (0.36 to 2.12%) were identified in all EOs by gas chromatography coupled to mass spectrometry analysis. The major components (relative intensity ≥ 10%) were cis-dihydro carvone, carvone, and cis-piperitone epoxide for Minthostachys mollis leaves; ß-pinene, limonene, and ledol for Lepechinia heteromorpha leaves; limonene, neral, and geranial for Aloysia citriodora, both leaves and flowers; α-pinene, and limonene for Myrcianthes myrsinoides leaves; and α-pinene, ß-myrcene, and (E)-ß-Ocimene for Dalea carthagenensis leaves. Constituted by (Z)-ß-ocimene, dihydrotagetone, (Z)-tagetone, and car-3-en-2-one, EO of Tagetes minuta leaves induced an irreversible cytostatic effect against MCF-7 human breast tumor cells. Further in vivo studies must be carried out to establish the safe and efficient dose of T. minuta EO as adjuvant treatment in oncological therapies.
RESUMO
The use of agrochemicals has caused environmental problems and toxicity to humans, so natural alternatives for disease control during harvest and postharvest have been evaluated. The aim of this study was to evaluate cinnamon essential oil, neem oil, and black sapote fruit extract for in vitro inhibition of fungi isolated from chayote fruit. The extracts were applied at 300, 350, and 400 ppm in Petri dishes and the mycelial growth of Fusarium oxysporum, Fusarium solani, Goetrichum sp., and Phytophthora capsici was evaluated for 7 days, and the percentage of mycelial growth inhibition per day was calculated. Cinnamon oil showed a fungicidal effect at all concentrations. Neem oil at 400 ppm showed a 42.3% reduction in the growth of F. solani and 27.8% reduction in the growth of F. oxysporum, while at 350 ppm it inhibited the mycelial growth of Phytophthora capsici by 53.3% and of Goetrichum sp. by 20.9%; finally, the black sapote extract at 400 ppm inhibited 21.9-28.6% of the growth of all fungi. The growth of postharvest fungi on chayote fruit could be prevented or reduced by applying the plant extracts evaluated at adequate concentrations.
RESUMO
Chili is one of the world's most widely used horticultural products. Many dishes around the world are prepared using this fruit. The chili belongs to the genus Capsicum and is part of the Solanaceae family. This fruit has essential biomolecules such as carbohydrates, dietary fiber, proteins, and lipids. In addition, chili has other compounds that may exert some biological activity (bioactivities). Recently, many studies have demonstrated the biological activity of phenolic compounds, carotenoids, and capsaicinoids in different varieties of chili. Among all these bioactive compounds, polyphenols are one of the most studied. The main bioactivities attributed to polyphenols are antioxidant, antimicrobial, antihyperglycemic, anti-inflammatory, and antihypertensive. This review describes the data from in vivo and in vitro bioactivities attributed to polyphenols and capsaicinoids of the different chili products. Such data help formulate functional foods or food ingredients.
Assuntos
Capsicum , Capsicum/metabolismo , Capsaicina/farmacologia , Capsaicina/metabolismo , Frutas/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Fenóis/metabolismo , Polifenóis/farmacologia , Polifenóis/metabolismoRESUMO
This study predicted dapaconazole clinical drug−drug interactions (DDIs) over the main Cytochrome P450 (CYP) isoenzymes using static (in vitro to in vivo extrapolation equation, IVIVE) and dynamic (PBPK model) approaches. The in vitro inhibition of main CYP450 isoenzymes by dapaconazole in a human liver microsome incubation medium was evaluated. A dapaconazole PBPK model (Simcyp version 20) in dogs was developed and qualified using observed data and was scaled up for humans. Static and dynamic models to predict DDIs following current FDA guidelines were applied. The in vitro dapaconazole inhibition was observed for all isoforms investigated, including CYP1A2 (IC50 of 3.68 µM), CYP2A6 (20.7 µM), 2C8 (104.1 µM), 2C9 (0.22 µM), 2C19 (0.05 µM), 2D6 (0.87 µM), and 3A4 (0.008−0.03 µM). The dynamic (PBPK) and static DDI mechanistic model-based analyses suggest that dapaconazole is a weak inhibitor (AUCR > 1.25 and <2) of CYP1A2 and CYP2C9, a moderate inhibitor (AUCR > 2 and <5) of CYP2C8 and CYP2D6, and a strong inhibitor (AUCR ≥ 5) of CYP2C19 and CYP3A, considering a clinical scenario. The results presented may be a useful guide for future in vivo and clinical dapaconazole studies.
RESUMO
There is an urgent need to discover and develop new drugs to combat parasitic diseases as Chagas disease (Trypanosoma cruzi), sleeping sickness (Trypanosoma brucei), and leishmaniasis (Leishmania ssp.). These diseases are considered among the 13 most unattended diseases worldwide according to the WHO. In the present work, the synthesis of 14 arylsubstituted imidazoles and its molecular docking onto sterol 14α-demethylase (CYP51) was executed. In addition, the compounds, antiprotozoal activity against T. brucei, T. cruzi, Trypanosoma brucei rhodesiense, and Leishmania infantum was evaluated. In vitro antiparasitic results of the arylsubstituted imidazoles against T. brucei, T. cruzi, T.b. rhodesiense, and L. infantum indicated that all samples from arylsubstituted imidazole compounds presented interesting antiparasitic activity to various extent. The ligands 5a, 5c, 5e, 5f, 5g, 5i, and 5j exhibited strong activity against T. brucei, T. cruzi, T.b. rhodesiense, and L. infantum with IC50 values ranging from 0.86 to 10.23 µM. Most samples were cytotoxic against MRC-5 cell lines (1.12 < CC50 < 51.09 µM) and only ligand 5c showed a good selectivity against all tested parasites. According to the results of the molecular docking, the aromatic substituents in positions 1, 4, and 5 have mainly stabilizing hydrophobic interactions with the enzyme matrix, while the oxygen from NO2, SO3H, and OH groups interacts with the Fe2+ ion of the Heme group.
Assuntos
Antiprotozoários/química , Doença de Chagas/tratamento farmacológico , Imidazóis/química , Leishmania infantum/enzimologia , Leishmaniose/tratamento farmacológico , Esterol 14-Desmetilase/química , Trypanosoma brucei brucei/enzimologia , Trypanosoma cruzi/enzimologia , Tripanossomíase Africana/tratamento farmacológico , Animais , Antiprotozoários/farmacologia , Linhagem Celular , Humanos , Imidazóis/farmacologia , Leishmania infantum/efeitos dos fármacos , Simulação de Acoplamento Molecular , Esterol 14-Desmetilase/metabolismo , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacosRESUMO
The engineering of bone tissues represents an area of opportunity for the development of new polymeric compounds. In this context, the objective of this work is the generation and evaluation in vitro of supports obtained from mixtures of starch with poly (lactic acid) (PLA), treated with arginine-glycine-aspartic acid peptides (RGD). For this, non-woven fibers of PLA with different starch content (0.0, 2.5, 5.0 and 10.0%wt) were obtained using the electrospinning technique. Then the physical absorption of RGD was carried out, with the aim of increasing the cellular adhesion of the polymeric material. Subsequently, in vitro biocompatibility tests were performed, and viability (LIFE/DEAD), proliferation (MTS assay) and cell adhesion were carried out with osteoblasts incubated for 48â¯h. Regarding biocompatibility results, only viable cells were found for all the compositions, and the biocompatibility of the materials was validated by the morphological analysis of the cultured cells, where extended cells were observed. Proliferation assays show that osteoblasts proliferate better on the surfaces of PLA and PLA with 5.0% starch scaffolds. Therefore, it is concluded that the scaffolds obtained by electrospinning of PLA with starch and functionalized with RGD are promising for its use in the regeneration of bone tissue.
Assuntos
Regeneração Óssea , Oligopeptídeos/química , Osteoblastos/metabolismo , Poliésteres/química , Amido/química , Alicerces Teciduais/química , Humanos , Osteoblastos/citologiaRESUMO
ABSTRACT The triterpene lupeol (1) and some of its esters are secondary metabolites produced by species of Celastraceae family, which have being associated with cytotoxic activity. We report herein the isolation of 1, the semi-synthesis of eight lupeol esters and the evaluation of their in vitro activity against nine strains of cancer cells. The reaction of carboxylic acids with 1 and DIC/DMAP was used to obtain lupeol stearate (2), lupeol palmitate (3) lupeol miristate (4), and the new esters lupeol laurate (5), lupeol caprate (6), lupeol caprilate (7), lupeol caproate (8) and lupeol 3',4'-dimethoxybenzoate (9), with high yields. Compounds 1-9 were identified using FT-IR, 1H, 13C-NMR, CHN analysis and XRD data and were tested in vitro for proliferation of human cancer cell activity. In these assays, lupeol was inactive (GI50> 250µg/mL) while lupeol esters 2 -4 and 7 - 9 showed a cytostatic effect. The XRD method was a suitable tool to determine the structure of lupeol and its esters in solid state. Compound 3 showed a selective growth inhibition effect on erythromyeloblastoid leukemia (K-562) cells in a concentration-dependent way. Lupeol esters 4 and 9 showed a selective cytostatic effect with low GI50 values representing promising prototypes for the development of new anticancer drugs.
Assuntos
Triterpenos/análise , Celastraceae/classificação , Produtos Biológicos , Quimioprevenção/estatística & dados numéricosRESUMO
Modular hip prostheses are flexible to match anatomical variations and to optimize mechanical and tribological properties of each part by using different materials. However, micromotions associated with the modular components can lead to fretting corrosion and, consequently, to release of debris which can cause adverse local tissue reactions in human body. In the present study, the surface damage and residues released during in vitro fretting corrosion tests were characterized by stereomicroscope, SEM and EDS. Two models of modular hip prosthesis were studied: Model SS/Ti Cementless whose stem was made of ASTM F136 Ti-6Al-4V alloy and whose metallic head was made of ASTM F138 austenitic stainless steel, and Model SS/SS Cemented with both components made of ASTM F138 stainless steel. The fretting corrosion tests were evaluated according to the criteria of ASTM F1875 standard. Micromotions during the test caused mechanical wear and material loss in the head-taper interface, resulting in fretting-corrosion. Model SS/SS showed higher grade of corrosion. Different morphologies of debris predominated in each model studied. Small and agglomerated particles were observed in the Model SS/Ti and irregular particles in the Model SS/SS. After 10 million cycles, the Model SS/Ti was more resistant to fretting corrosion than the Model SS/SS.
Assuntos
Prótese de Quadril , Desenho de Prótese , Falha de Prótese , Ligas , Corrosão , Humanos , Aço Inoxidável , Propriedades de Superfície , TitânioRESUMO
Calendula is used widely in cosmetic formulations that present phenolic compounds in their chemical constitution. The objective of our research was to develop and evaluate the stability of topical formulations containing 5% hydro-ethanolic extract of calendula leaves, including spreadability, and in vitro photo-protective, and antioxidant capacity. To evaluate the stability, we used organoleptic characteristics, pH, and viscosity parameters. Antioxidant capacity was measured by the DPPH (2,2-diphenyl-1-picrylhydrazyl) method, and the photo-protective capacity by SPF spectrophotometric measure. All formulations were stable. The calendula extract formulations in gel and cream showed no significant variations in pH, and the cream formulations presented lower viscosity variations than gel formulations. The spreadability of the gel formulations was superior to those in cream. The formulations also presented good antioxidant capacities and an FPS of around 1.75. In accordance with the results, the formulations can be used as antioxidants, but considering the low SPF obtained, calendula cannot be considered as a stand-alone sunscreen, yet may well be tested in future studies towards verifying enhancement of synthetic sunscreens.
A calêndula é amplamente utilizada em formulações cosméticas, apresentando compostos fenólicos em sua constituição química. Desta forma, o objetivo desta pesquisa foi desenvolver e avaliar a estabilidade de formulações tópicas contendo 5% de extrato hidroetanólico das folhas de calêndula, bem como a espalhabilidade, capacidade antioxidante e fotoprotetora in vitro nas mesmas. Para a avaliação da estabilidade, foram usados parâmetros como a verificação das características organolépticas, pH e viscosidade. A capacidade antioxidante foi verificada pelo método do DPPH (2,2-difenil,1- picril-hidrazila) e a capacidade fotoprotetora pela medida espectrofotométrica do FPS. Para as formulações testadas, observou-se que apresentaram uma boa estabilidade. As formulações de creme e gel com extrato de calêndula não apresentaram variações significativas nos valores de pH e o creme apresentou as menores variações de viscosidade em relação ao gel. A espalhabilidade das formulações de gel foi superior à do creme. As formulações também apresentaram uma boa capacidade antioxidante e um FPS em torno de 1.75. De acordo com os resultados, a formulação pode ser utilizada com ação antioxidante, porém com o FPS obtido, a calêndula não pode ser considerada um filtro solar isolado, mas poderá ser testada em estudos futuros para verificar a potencialização de filtros solares sintéticos.
Assuntos
/análise , Calendula , Estabilidade de Cosméticos , Antioxidantes/classificação , Pesquisa Homeopática Básica , Fator de Proteção SolarRESUMO
Maintaining "gut health" is a goal for scientists throughout the world. Therefore, microbiota management models for testing probiotics, prebiotics, and synbiotics have been developed. The SHIME(®) model was used to study the effect of fructooligosaccharide (FOS) on the fermentation pattern of the colon microbiota. Initially, an inoculum prepared from human feces was introduced into the reactor vessels and stabilized over 2 weeks using a culture medium. This stabilization period was followed by a 2-week control period during which the microbiota was monitored. The microbiota was then subjected to a 4-week treatment period by adding 5 g/day-1 FOS to vessel one (the "stomach" compartment). Plate counts, Denaturing Gradient Gel Electrophoresis (DGGE), short-chain fatty acid (SCFA), and ammonium analyses were used to observe the influence of FOS treatment in simulated colon compartments. A significant increase (P<.01) in the Lactobacillus spp. and Bifidobacterium spp. populations was observed during the treatment period. The DGGE obtained showed the overall microbial community was changed in the ascending colon compartment of the SHIME reactor. FOS induced increase of the SCFA concentration (P<.05) during the treatment period, mainly due to significant increased levels of acetic and butyric acids. However, ammonium concentrations increased during the same period (P<.01). This study indicates the usefulness of in vitro methods that simulate the colon region as part of research towards the improvement of human health.
Assuntos
Colo/microbiologia , Microbiota/efeitos dos fármacos , Oligossacarídeos/farmacologia , Prebióticos/análise , Compostos de Amônio/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Ácidos Graxos Voláteis/metabolismo , Humanos , Modelos BiológicosRESUMO
The objective of the current study was to formulate mucoadhesive controlled release matrix tablets of flurbiprofen and to optimize its drug release profile and bioadhesion using response surface methodology. Tablets were prepared via a direct compression technique and evaluated for in vitro dissolution parameters and bioadhesive strength. A central composite design for two factors at five levels each was employed for the study. Carbopol 934 and sodium carboxymethylcellulose were taken as independent variables. Fourier transform infrared (FTIR) spectroscopy studies were performed to observe the stability of the drug during direct compression and to check for a drug-polymer interaction. Various kinetic models were applied to evaluate drug release from the polymers. Contour and response surface plots were also drawn to portray the relationship between the independent and response variables. Mucoadhesive tablets of flurbiprofen exhibited non-Fickian drug release kinetics extending towards zero-order, with some formulations (F3, F8, and F9) reaching super case II transport, as the value of the release rate exponent (n) varied between 0.584 and 1.104. Polynomial mathematical models, generated for various response variables, were found to be statistically significant (P<0.05). The study also helped to find the drug's optimum formulation with excellent bioadhesive strength. Suitable combinations of two polymers provided adequate release profile, while carbopol 934 produced more bioadhesion.
O objetivo do presente estudo foi formular comprimidos mucoadesivos de flurbiprofeno, de liberação controlada, e otimizar o perfil da liberação do fármaco e a bioadesão, utilizando a metodologia de superfície de resposta. Prepararam-se os comprimidos via técnica de compressão direta, que foram avaliados in vitro quanto aos parâmetros de dissolução e da força bioadesiva. Planejamento com componente central para dois fatores em cinco níveis cada foi empregado para esse estudo. Carbopol 934 e carboximetilcelulose sódica foram tomados como variáveis independentes. Efetuaram-se estudos de espectroscopia por transformada de Fourier (FTIR) para observar a estabilidade do fármaco durante a compressão direta e para avaliar a interação a fármaco-polímero. Aplicaram-se vários métodos cinéticos para avaliar a liberação do fármaco dos polímeros. Gráficos de superfície de contorno e de resposta foram efetuados para retratar a relação entre as variáveis dependentes e a resposta. Os comprimidos mucoadesivos de flurbiprofeno apresentaram cinética de liberação não-fickiana, estendendo para ordem zero, para algumas formulações (F3, F8 e F9), alcançando transporte super caso II, à medida que o valor do expoente (n) de taxa de liberação variou entre 0,584 e 1,104. Modelos matemáticos polinomiais, gerados por diversas variáveis de resposta, foram estatisticamente, significativos (P<0,05). O estudo também auxiliou a encontrar a formulação ótima do fármaco, com excelente força de bioadesão. Combinações adequadas dos dois polímeros resultaram em perfis de liberação adequado, sendo que o Carbopol 934 produziu mais adesão.