Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Amino Acids ; 55(7): 913-929, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37258638

RESUMO

Hypusine amino acid [Nε-(4-amino-2-hydroxybutyl)-lysine] was first isolated in 1971 from bovine brain extracts. Hypusine originates from a post-translational modification at the eukaryotic translation initiation factor 5A (eIF5A), a protein produced by archaebacteria and eukaryotes. The eIF5A protein is the only one described containing the hypusine residue, which is essential for its activity. Hypusine as a free amino acid is a consequence of proteolytic degradation of eIF5A. Herein, we showed, for the first time, evidence of biological activity for the free hypusine. C6 rat glioma cells were treated with hypusine, and different cellular parameters were evaluated. Hypusine treatment significantly reduced C6 cell proliferation and potently suppressed their clonogenic capacity without leading to apoptosis. Hypusine also decreased the Eif5A transcript content and the global protein synthesis profile that may occur due to negative feedback in response to high hypusine concentration, controlling the content of newly synthesized eIF5A, which can affect the translation process. Besides, hypusine treatment also altered cellular metabolism by changing the pathways for energy production, reducing cellular respiration coupled with oxidative phosphorylation, and increasing the anaerobic metabolism. These observed results and the relationship between eIF5A and tumor processes led us to test the combination of hypusine with the chemotherapeutic drug temozolomide. Combining temozolomide with hypusine reduced the MTT conversion to the same levels as those observed using double temozolomide dosage alone, demonstrating a synergetic action between the compounds. Thus, since 1971, this is the first study showing evidence of biological activity for hypusine not associated with being an essential component of the eiF5A protein. Finding out the molecular targets of hypusine are the following efforts to completely characterize its biological activity.


Assuntos
Aminoácidos , Lisina , Animais , Bovinos , Ratos , Aminoácidos/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A , Lisina/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Temozolomida
2.
J Cell Biochem ; 122(5): 549-561, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33459432

RESUMO

The eukaryotic translation initiation factor 5A (eIF5A) is the only known protein containing the amino acid residue hypusine, essential for its activity. Hypusine residue is produced by a posttranslational modification involving deoxyhypusine synthetase and deoxyhypusine hydroxylase. Herein, we aimed to describe the role of the alternative human isoform A on mitochondrial processes. Isoform A depletion modulates oxidative metabolism in association with the downregulation of mitochondrial biogenesis-related genes. Through positive feedback, it increases cell respiration leading to highly reactive oxygen species production, which impacts mitochondrial bioenergetics. These metabolic changes compromise mitochondrial morphology, increasing its electron density and fission, observed by transmission electron microscopy. This set of changes leads the cells to apoptosis, evidenced by increased DNA fragmentation and proapoptotic BAK protein content increase. Thus, we show that the alternative eIF5A isoform A is crucial for energy metabolism controlled by mitochondria and cellular survival.


Assuntos
Mitocôndrias/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Apoptose/fisiologia , Humanos , Lisina/análogos & derivados , Lisina/metabolismo , Microscopia Eletrônica de Transmissão , Fatores de Iniciação de Peptídeos/genética , Isoformas de Proteínas/genética , Proteínas de Ligação a RNA/genética , Fator de Iniciação de Tradução Eucariótico 5A
3.
Mol Biol Rep ; 46(1): 587-596, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30519811

RESUMO

The hormone insulin plays a central role in the metabolism of carbohydrates, lipids, and proteins. In relation to protein metabolism, insulin stimulates amino acid uptake and activates protein synthesis in responsive cells by modulation of signal transduction pathways, such as associated to Akt/PkB, mTOR, S6Ks, 4E-BP1, and several translation initiation/elongation factors. In this context, there is no information on direct cellular treatment with insulin and effects on eukaryotic translation initiation factor 5A (eIF5A) regulation. The eIF5A protein contains an exclusive amino acid residue denominated hypusine, which is essential for its activity and synthesized by posttranslational modification of a specific lysine residue using spermidine as substrate. The eIF5A protein is involved in cellular proliferation and differentiation processes, as observed for satellite cells derived from rat muscles, revealing that eIF5A has an important role in muscle regeneration. The aim of this study was to determine whether eIF5A expression and hypusination are influenced by direct treatment of insulin on L6 myoblast cells. We observed that insulin increased the content of eIF5A transcripts. This effect occurred in cells treated or depleted of fetal bovine serum, revealing a positive insulin effect independent of other serum components. In addition, it was observed that hypusination follows the maintenance of eIF5A protein content in the serum depleted cells and treated with insulin. These results demonstrate that eIF5A is modulated by insulin, contributing the protein synthesis machinery control, as observed by puromycin incorporation in nascent proteins.


Assuntos
Insulina/metabolismo , Lisina/análogos & derivados , Fatores de Iniciação de Peptídeos/efeitos dos fármacos , Proteínas de Ligação a RNA/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Insulina/farmacologia , Lisina/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Fatores de Iniciação de Peptídeos/genética , Biossíntese de Proteínas/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/genética , Ratos , Transdução de Sinais/efeitos dos fármacos , Fator de Iniciação de Tradução Eucariótico 5A
4.
Amino Acids ; 48(10): 2363-74, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27388480

RESUMO

The translation elongation factor eIF5A is conserved through evolution and is necessary to rescue the ribosome during translation elongation of polyproline-containing proteins. Although the site of eIF5A binding to the ribosome is known, no systematic analysis has been performed so far to determine the important residues on the surface of eIF5A required for ribosome binding. In this study, we used clustered charged-to-alanine mutagenesis and structural modeling to address this question. We generated four new mutants of yeast eIF5A: tif51A-4, tif51A-6, tif51A-7 and tif51A-11, and complementation analysis revealed that tif51A-4 and tif51A-7 could not sustain cell growth in a strain lacking wild-type eIF5A. Moreover, the allele tif51A-4 also displayed negative dominance over wild-type eIF5A. Both in vivo GST-pulldowns and in vitro fluorescence anisotropy demonstrated that eIF5A from mutant tif51A-7 exhibited an importantly reduced affinity for the ribosome, implicating the charged residues in cluster 7 as determinant features on the eIF5A surface for contacting the ribosome. Notably, modified eIF5A from mutant tif51A-4, despite exhibiting the most severe growth phenotype, did not abolish ribosome interactions as with mutant tif51A-7. Taking into account the modeling eIF5A + 80S + P-tRNA complex, our data suggest that interactions of eIF5A with ribosomal protein L1 are more important to stabilize the interaction with the ribosome as a whole than the contacts with P-tRNA. Finally, the ability of eIF5A from tif51A-4 to bind to the ribosome while potentially blocking physical interaction with P-tRNA could explain its dominant negative phenotype.


Assuntos
Mutagênese , Fatores de Iniciação de Peptídeos , Proteínas de Ligação a RNA , Proteínas Ribossômicas , Ribossomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Ligação Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/química , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA