Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 258: 112991, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39033547

RESUMO

INTRODUCTION: Cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Ischemic heart disease is one of the most harmful conditions to cellular structure and function. After reperfusion treatment, a spectrum of adverse effects becomes evident, encompassing altered cell viability, heightened oxidative stress, activated autophagy, and increased apoptosis. Photobiomodulation (PBM) has been utilized in experimental models of cardiac hypoxia to enhance mitochondrial response and ameliorate biochemical changes in injured tissue. However, the effects of PBM on cultured cardiomyocytes subjected to hypoxia/reoxygenation are not yet well established. METHOD: H9C2 cardiomyocytes were exposed to hypoxia with concentrations of 300 µM CoCl2 for 24 h, followed by 16 h of reoxygenation through incubation in a normoxic medium. Treatment was conducted using GaAIAs Laser (850 nm) after hypoxia at an intensity of 1 J/cm2. Cells were divided into three groups: Group CT (cells maintained under normoxic conditions), Group HR (cells maintained in hypoxia and reoxygenation conditions without treatment), Group HR + PBM (cells maintained in hypoxia and reoxygenation conditions that underwent PBM treatment). Cell viability was analyzed using MTT, and protein expression was assessed by western blot. One-way ANOVA with the Tukey post hoc test was used for data analysis. Differences were significant when p < 0.05. RESULTS: PBM at an intensity of 1 J/cm2 mitigated the alterations in cell survival caused by hypoxia/reoxygenation. Additionally, it significantly increased the expression of proteins Nrf2, HSP70, mTOR, LC3II, LC3II/I, and Caspase-9, while reducing the expression of PGC-1α, SOD2, xanthine oxidase, Beclin-1, LC3I, and Bax. CONCLUSION: PBM at intensities of 1 J/cm2 reverses the changes related to oxidative stress, mitochondrial biogenesis, autophagy, and apoptosis caused by hypoxia and reoxygenation in a culture of cardiomyocytes.


Assuntos
Apoptose , Autofagia , Hipóxia Celular , Sobrevivência Celular , Miócitos Cardíacos , Estresse Oxidativo , Miócitos Cardíacos/efeitos da radiação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Sobrevivência Celular/efeitos da radiação , Animais , Ratos , Linhagem Celular , Hipóxia Celular/efeitos da radiação , Autofagia/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Apoptose/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Oxigênio/metabolismo , Cobalto/química , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
2.
Clinics (Sao Paulo) ; 79: 100363, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692008

RESUMO

OBJECTIVE: This study aimed to investigate the effect of Esketamine (ESK) on the Hypoxia/Reoxygenation (H/R) injury of cardiomyocytes by regulating TRPV1 and inhibiting the concentration of intracellular Ca2+. METHODS: The H/R injury model of H9c2 cardiomyocytes was established after 4h hypoxia and 6h reoxygenation. H9c2 cells were treated with different concentrations of ESK or TRPV1 agonist capsaicin (10 µM) or TRPV1 inhibitor capsazepine (1 µM). Cell viability was detected by CCK-8 method, and apoptosis by flow cytometry. Intracellular Ca2+ concentration was evaluated by Fluo-4 AM. LDH, MDA, SOD, and GSH-Px were detected with corresponding commercial kits. TRPV1 and p-TRPV1 proteins were detected by Western blot. RESULTS: After H/R, H9c2 cell viability decreased, apoptosis increased, intracellular Ca2+ concentration increased, LDH and MDA levels increased, SOD and GSH-Px levels decreased, and p-TRPV1 expression increased. ESK treatment rescued these changes induced by H/R. After up-regulating TRPV1, the protective effect of ESK on H/R injury of H9c2 cells was weakened, while down-regulating TRPV1 could further protect against H/R injury. CONCLUSION: ESK alleviates H/R injury of cardiomyocytes by regulating TRPV1 expression and inhibiting intracellular Ca2+ concentration.


Assuntos
Apoptose , Cálcio , Capsaicina/análogos & derivados , Sobrevivência Celular , Ketamina , Miócitos Cardíacos , Canais de Cátion TRPV , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Animais , Ketamina/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Ratos , Capsaicina/farmacologia , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Citometria de Fluxo , Estresse Oxidativo/efeitos dos fármacos , Western Blotting
3.
Acta Physiol (Oxf) ; 240(6): e14151, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38676357

RESUMO

AIMS: Ischaemic heart disease remains a significant cause of mortality globally. A pharmacological agent that protects cardiac mitochondria against oxygen deprivation injuries is welcome in therapy against acute myocardial infarction. Here, we evaluate the effect of large-conductance Ca2+-activated K+ channels (BKCa) activator, Compound Z, in isolated mitochondria under hypoxia and reoxygenation. METHODS: Mitochondria from mice hearts were obtained by differential centrifugation. The isolated mitochondria were incubated with a BKCa channel activator, Compound Z, and subjected to normoxia or hypoxia/reoxygenation. Mitochondrial function was evaluated by measurement of O2 consumption in the complexes I, II, and IV in the respiratory states 1, 2, 3, and by maximal uncoupled O2 uptake, ATP production, ROS production, transmembrane potential, and calcium retention capacity. RESULTS: Incubation of isolated mitochondria with Compound Z under normoxia conditions reduced the mitochondrial functions and induced the production of a significant amount of ROS. However, under hypoxia/reoxygenation, the Compound Z prevented a profound reduction in mitochondrial functions, including reducing ROS production over the hypoxia/reoxygenation group. Furthermore, hypoxia/reoxygenation induced a large mitochondria depolarization, which Compound Z incubation prevented, but, even so, Compound Z created a small depolarization. The mitochondrial calcium uptake was prevented by the BKCa activator, extruding the mitochondrial calcium present before Compound Z incubation. CONCLUSION: The Compound Z acts as a mitochondrial BKCa channel activator and can protect mitochondria function against hypoxia/reoxygenation injury, by handling mitochondrial calcium and transmembrane potential.


Assuntos
Cálcio , Mitocôndrias Cardíacas , Animais , Camundongos , Cálcio/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Masculino , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Hipóxia/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Oxigênio/metabolismo
4.
Clinics ; Clinics;79: 100363, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1564332

RESUMO

Abstract Objective This study aimed to investigate the effect of Esketamine (ESK) on the Hypoxia/Reoxygenation (H/R) injury of cardiomyocytes by regulating TRPV1 and inhibiting the concentration of intracellular Ca2+. Methods The H/R injury model of H9c2 cardiomyocytes was established after 4h hypoxia and 6h reoxygenation. H9c2 cells were treated with different concentrations of ESK or TRPV1 agonist capsaicin (10 μM) or TRPV1 inhibitor capsazepine (1 μM). Cell viability was detected by CCK-8 method, and apoptosis by flow cytometry. Intracellular Ca2+ concentration was evaluated by Fluo-4 AM. LDH, MDA, SOD, and GSH-Px were detected with corresponding commercial kits. TRPV1 and p-TRPV1 proteins were detected by Western blot. Results After H/R, H9c2 cell viability decreased, apoptosis increased, intracellular Ca2+ concentration increased, LDH and MDA levels increased, SOD and GSH-Px levels decreased, and p-TRPV1 expression increased. ESK treatment rescued these changes induced by H/R. After up-regulating TRPV1, the protective effect of ESK on H/R injury of H9c2 cells was weakened, while down-regulating TRPV1 could further protect against H/R injury. Conclusion ESK alleviates H/R injury of cardiomyocytes by regulating TRPV1 expression and inhibiting intracellular Ca2+ concentration.

5.
JTCVS Open ; 10: 342-349, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36004209

RESUMO

Objective: The molecular pathways underlying hypoxemia-induced alterations in neurodevelopment of infants with congenital heart disease have not been delineated. We used transcriptome analysis to investigate differential gene expression induced by hypoxemia in an ovine artificial-womb model. Methods: Mid-gestation fetal sheep (median [interquartile range] 109 [107-112] days' gestation) were cannulated via the umbilical vessels, attached to a pumpless, low-resistance oxygenator circuit, and incubated in a sterile, fluid environment for 22 [21-23] days. Fetuses were maintained with an oxygen delivery of 20-25 mL/kg/min (normoxemia, n = 3) or 14-16 mL/kg/min (hypoxemia, n = 4). Transcriptional profiling by RNA sequencing was carried out on left frontal brains and hypoxemia-regulated genes were identified by differential gene expression analysis. Results: A total of 228 genes whose expression was up or down regulated by ≥1.5-fold (false discovery rate ≤0.05) were identified. The majority of these genes were induced in hypoxemic animals compared to normoxemic controls, and functional enrichment analysis identified respiratory electron transport as a pathway strongly upregulated in the brain during chronic hypoxemia. Further examination of hypoxemia-induced genes showed robust induction of all 7 subunits of the mitochondrial NADH:ubiquinone oxidoreductase (complex I). Other hypoxemia-induced genes included cytochrome B, a component of complex III, and ATP6, ATP8, both of which are components of complex V. Conclusions: Chronic fetal hypoxemia leads to upregulation of multiple mitochondrial respiratory complex genes critical for energy production and reactive oxygen species generation, including complex I. These data provide valuable insight into potential pathways involved in chronic hypoxemia-induced neuropathology and offers potential therapeutic targets for fetal neuroprotection in fetuses with congenital heart defects.

6.
Biol Res ; 52(1): 32, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31196153

RESUMO

BACKGROUND: Long non-coding RNA H19 (H19) plays an important role by regulating protein expression in different tissues and organs of the body. However, whether H19 induces hypoxia/reoxygenation (h/R) injury via increase of autophagy in the hepatoma carcinoma cells is unknown. RESULTS: H19 was expressed in the hepatoma carcinoma cells (Hep G2 and HCCLM3 cells) and its expression was most in 8 h/24R. The knockdown of H19 and 3-MA (an autophagy inhibitor) protected against h/R-induced apoptosis, cell damage, the expression of cleaved caspase-3 and cleaved caspase-9, the release of cytochrome c (Cyt c). The knockdown of H19 and 3-MA also decreased the autophagic vesicles (AVs) and the expression of Beclin-1 and the ration of LC3-II/LC3-I, and increased cell viability, the expression of Bcl-2 and P62 and the phosphorylation of PI3K, Akt and mTOR. In addition, chloroquine (CQ, an inhibitor of autophagy flux) markedly decreased formation of autophagy flux (the ration of LC3-II/LC3-I). The results of the knockdown of H19 group were similar to those of the 3-MA (or CQ) group. Rapamycin (a mTOR inhibitor, an autophagy activator) further down-regulated h/R-induced decrease of the phosphorylated PI3K, Akt and mTOR. The knockdown of H19 cancelled the effect of rapamycin. The overexpression of H19 further expanded h/R-induced increase of the ration of LC3-II/LC3-I and decrease of the phosphorylated PI3K, Akt and mTOR. CONCLUSIONS: Our results suggest that the long non-coding RNA H19 induces h/R injury by up-regulation of autophagy via activation of PI3K-Akt-mTOR pathway in the hepatoma carcinoma cells.


Assuntos
Carcinoma Hepatocelular/metabolismo , Hipóxia/metabolismo , Neoplasias Hepáticas/metabolismo , RNA Longo não Codificante/metabolismo , Traumatismo por Reperfusão/metabolismo , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/patologia , Oxigênio/metabolismo , Regulação para Cima/fisiologia
7.
Biol. Res ; 52: 32, 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1038783

RESUMO

BACKGROUND: Long non-coding RNA H19 (H19) plays an important role by regulating protein expression in different tissues and organs of the body. However, whether H19 induces hypoxia/reoxygenation (h/R) injury via increase of autophagy in the hepatoma carcinoma cells is unknown. RESULTS: H19 was expressed in the hepatoma carcinoma cells (Hep G2 and HCCLM3 cells) and its expression was most in 8 h/24R. The knockdown of H19 and 3-MA (an autophagy inhibitor) protected against h/R-induced apoptosis, cell damage, the expression of cleaved caspase-3 and cleaved caspase-9, the release of cytochrome c (Cyt c). The knockdown of H19 and 3-MA also decreased the autophagic vesicles (AVs) and the expression of Beclin-1 and the ration of LC3-II/LC3-I, and increased cell viability, the expression of Bcl-2 and P62 and the phosphorylation of PI3K, Akt and mTOR. In addition, chloroquine (CQ, an inhibitor of autophagy flux) markedly decreased formation of autophagy flux (the ration of LC3-II/LC3-I). The results of the knockdown of H19 group were similar to those of the 3-MA (or CQ) group. Rapamycin (a mTOR inhibitor, an autophagy activator) further down-regulated h/R-induced decrease of the phosphorylated PI3K, Akt and mTOR. The knockdown of H19 cancelled the effect of rapamycin. The overexpression of H19 further expanded h/R-induced increase of the ration of LC3-II/LC3-I and decrease of the phosphorylated PI3K, Akt and mTOR. CONCLUSIONS: Our results suggest that the long non-coding RNA H19 induces h/R injury by up-regulation of autophagy via activation of PI3K-Akt-mTOR pathway in the hepatoma carcinoma cells.


Assuntos
Humanos , Traumatismo por Reperfusão/metabolismo , Carcinoma Hepatocelular/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias Hepáticas/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Autofagia/efeitos dos fármacos , Regulação para Cima/fisiologia , Isquemia Encefálica/metabolismo , Apoptose/fisiologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia
8.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;51(6): e6555, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-889109

RESUMO

Long non-coding RNAs (lncRNAs) play an important role in the pathogenesis of cardiovascular diseases, especially in myocardial infarction and ischemia/reperfusion (I/R). However, the underlying molecular mechanism remains unclear. In this study, we determined the role and the possible underlying molecular mechanism of lncRNA-ROR in myocardial I/R injury. H9c2 cells and human cardiomyocytes (HCM) were subjected to either hypoxia/reoxygenation (H/R), I/R or normal conditions (normoxia). The expression levels of lncRNA-ROR were detected in serum of myocardial I/R injury patients, H9c2 cells, and HCM by qRT-PCR. Then, levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) were measured by kits. Cell viability, apoptosis, apoptosis-associated factors, and p38/MAPK pathway were examined by MTT, flow cytometry, and western blot assays. Furthermore, reactive oxygen species (ROS) production was determined by H2DCF-DA and MitoSOX Red probes with flow cytometry. NADPH oxidase activity and NOX2 protein levels were measured by lucigenin chemiluminescence and western blot. Results showed that lncRNA-ROR expression was increased in I/R patients and in H/R treatment of H9c2 cells and HCM. Moreover, lncRNA-ROR significantly promoted H/R-induced myocardial injury via stimulating release of LDH, MDA, SOD, and GSH-PX. Furthermore, lncRNA-ROR decreased cell viability, increased apoptosis, and regulated expression of apoptosis-associated factors. Additionally, lncRNA-ROR increased phosphorylation of p38 and ERK1/2 expression and inhibition of p38/MAPK, and rescued lncRNA-ROR-induced cell injury in H9c2 cells and HCM. ROS production, NADPH oxidase activity, and NOX2 protein levels were promoted by lncRNA-ROR. These data suggested that lncRNA-ROR acted as a therapeutic agent for the treatment of myocardial I/R injury.


Assuntos
Humanos , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , RNA Longo não Codificante/metabolismo , Apoptose , Western Blotting , Sobrevivência Celular , Glutationa Peroxidase/metabolismo , Hidroliases/metabolismo , Malondialdeído/metabolismo , Isquemia Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/genética , Miócitos Cardíacos , Reação em Cadeia da Polimerase em Tempo Real , RNA Longo não Codificante/genética , Transdução de Sinais , Superóxido Dismutase/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA