Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Exp Allergy ; 53(2): 198-209, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36176209

RESUMO

BACKGROUND: Allergen-specific immunotherapy (AIT) is the only clinical approach that can potentially cure some allergic diseases by inducing immunological tolerance. Dermatophagoides pteronyssinus is considered as the most important source of mite allergens worldwide, with high sensitization rates for the major allergens Der p 1, Der p 2 and Der p 23. The aim of this work is to generate a hypoallergenic hybrid molecule containing T-cell epitopes from these three major allergens. METHODS: The hybrid protein termed Der p 2231 containing T-cell epitopes was purified by affinity chromatography. The human IgE reactivity was verified by comparing those with the parental allergens. The hybrid was also characterized immunologically through an in vivo mice model. RESULTS: The hybrid rDer p 2231 stimulated in peripheral blood mononuclear cells (PBMCs) isolated from allergic patients with higher levels of IL- 2, IL-10, IL-15 and IFN-γ, as well as lower levels of IL-4, IL-5, IL-13, TNF-α and GM-CSF. The use of hybrid molecules as a therapeutic model in D. pteronyssinus allergic mice led to the reduction of IgE production and lower eosinophilic peroxidase activity in the airways. We found increased levels of IgG antibodies that blocked the IgE binding to the parental allergens in the serum of allergic patients. Furthermore, the stimulation of splenocytes from mice treated with rDer p 2231 induced higher levels of IL-10 and IFN-γ and decreased the secretion of IL-4 and IL-5, when compared with parental allergens and D. pteronyssinus extract. CONCLUSIONS: rDer p 2231 has the potential to be used in AIT in patients co-sensitized with D. pteronyssinus major allergens, once it was able to reduce IgE production, inducing allergen-specific blocking antibodies, restoring and balancing Th1/Th2 immune responses, and inducing regulatory T-cells.


Assuntos
Antígenos de Dermatophagoides , Epitopos de Linfócito T , Hipersensibilidade , Animais , Humanos , Camundongos , Alérgenos , Antígenos de Dermatophagoides/imunologia , Antígenos de Dermatophagoides/farmacologia , Antígenos de Dermatophagoides/uso terapêutico , Proteínas de Artrópodes , Dermatophagoides pteronyssinus , Epitopos de Linfócito T/química , Epitopos de Linfócito T/uso terapêutico , Hipersensibilidade/tratamento farmacológico , Imunoglobulina E , Interleucina-10 , Interleucina-4 , Interleucina-5 , Leucócitos Mononucleares , Pyroglyphidae , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Imunoterapia/métodos
2.
Biochim Biophys Acta Gen Subj ; 1866(4): 130096, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35077824

RESUMO

BACKGROUND: Allergic diseases figure among the most common immune-mediated diseases worldwide, affecting more than 25% of the world's population. Allergic reactions can be triggered by house dust mite (HDM) allergens, of which the so-called group 21 of allergens is considered as clinically relevant. METHODS: Herein, we used a structural bioinformatics and immunoinformatics approach to design hypoallergenic mutant variants of the Der p 21 allergen of Dermatophagoides pteronyssinus, which were then recombinantly expressed in bacteria and tested for their IgE-reactivities. For this, we scanned the wild-type Der p 21 protein for all possible single amino acid substitutions in key IgE-binding regions that could render destabilization of the major epitope regions. RESULTS: Four main substitutions (D82P, K110G, E77G, and E87S) were selected to build mutant variants of the Der p 21 allergen, which were produced in their recombinant forms; two of these variants showed reduced reactivity with IgE. Molecular dynamic simulations and immune simulations demonstrated the overall effects of these mutations on the structural stability of the Der p 21 allergen and on the profile of immune response induced through immunotherapy. CONCLUSIONS: When produced in their recombinant forms, two of the Der p 21 mutant variants, namely proteins K110G and E87S, showed significantly reduced IgE reactivities against sera from HDM-allergic individuals (n = 20; p < 0.001). GENERAL SIGNIFICANCE: This study successfully translated a rational in silico mutagenesis design into low IgE-binding mutant variants of the allergen rDer p 21. These novel hypoallergens are promising to compose next-generation allergen-immunotherapy formulations in near future.


Assuntos
Hipersensibilidade , Imunoglobulina E , Alérgenos/genética , Animais , Antígenos de Dermatophagoides/química , Antígenos de Dermatophagoides/genética , Proteínas de Artrópodes/genética , Humanos , Hipersensibilidade/genética , Imunoglobulina E/genética , Pyroglyphidae/genética , Pyroglyphidae/metabolismo
3.
Clin Exp Allergy ; 50(7): 835-847, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32314444

RESUMO

INTRODUCTION: Allergen-specific immunotherapy (AIT) represents a curative approach for treating allergies. In the tropical and subtropical regions of the world, Blomia tropicalis (Blo t 5 and Blo t 21) is the likely dominant source of indoor allergens. AIM: To generate a hypoallergenic Blo t 5/Blo t 21 hybrid molecule that can treat allergies caused by B tropicalis. METHODS: Using in silico design of B tropicalis hybrid proteins, we chose two hybrid proteins for heterologous expression. Wild-type Blo t 5/Blo t 21 hybrid molecule and a hypoallergenic version, termed BTH1 and BTH2, respectively, were purified by ion exchange and size exclusion chromatography and characterized by physicochemical, as well as in vitro and in vivo immunological, experiments. RESULTS: BTH1, BTH2 and the parental allergens were purified to homogeneity and characterized in detail. BTH2 displayed the lowest IgE reactivity that induced basophil degranulation using sera from allergic rhinitis and asthmatic patients. BTH2 essentially presented the same endolysosomal degradation pattern as the shortened rBlo t 5 and showed a higher resistance towards degradation than the full-length Blo t 5. In vivo immunization of mice with BTH2 led to the production of IgG antibodies that competed with human IgE for allergen binding. Stimulation of splenocytes from BTH2-immunized mice produced higher levels of IL-10 and decreased secretion of IL-4 and IL-5. In addition, BTH2 stimulated T-cell proliferation in PBMCs isolated from allergic patients, with secretion of higher levels of IL-10 and lower levels of IL-5 and IL-13, when compared to parental allergens. CONCLUSIONS AND CLINICAL RELEVANCE: BTH2 is a promising hybrid vaccine candidate for immunotherapy of Blomia allergy. However, further pre-clinical studies addressing its efficacy and safety are needed.


Assuntos
Alérgenos , Proteínas de Artrópodes , Hipersensibilidade , Ácaros , Vacinas , Alérgenos/genética , Alérgenos/imunologia , Alérgenos/farmacologia , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/farmacologia , Citocinas , Feminino , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/terapia , Masculino , Camundongos Endogâmicos BALB C , Ácaros/genética , Ácaros/imunologia , Vacinas/genética , Vacinas/imunologia , Vacinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA