Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; : e202400739, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152948

RESUMO

In the present study, both short-range and long-range structural features of an ionic bridged silsesquioxane, specifically one containing the 1,4-diazoniabicyclo[2.2.2]octane chloride group (ISSQ), were elucidated. This ionic silsesquioxane was synthesized via direct polycondensation of a bridged organosilane precursor, without any additional functionalization step. Si-O-Si cage structures typical of Polyhedral Oligomeric Silsesquioxanes (POSS) were identified. The average interatomic distances of the POSS cages, including the open T8 cage and the T12 cage for the ISSQ, as well as the T8 cage for a commercially available pendant POSS were determined. It is the first report of the interatomic distance determination of POSS cage; achieved by using total pair distribution function G(r) values obtained through high-resolution synchrotron X-ray diffraction combined with density functional theory (DFT) calculations. The application of DFT was crucial for accurately assigning X-ray peaks and verifying structural details. Furthermore, the analysis of X-ray diffraction peaks and the examination of crystalline domains via transmission electron microscopy enabled the proposal of a hexagonal arrangement of Si-O-Si cages over long ranges within the ionic bridged silsesquioxane. This proposed arrangement highlights a distinctive structural organization that could impact the material's properties and applications.

2.
Polymers (Basel) ; 15(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37299259

RESUMO

Natural lignocellulosic fibers (NLFs) have been used as a reinforcement for polymer matrix composites in the past couple of decades. Their biodegradability, renewability, and abundance make them appealing for sustainable materials. However, synthetic fibers surpass NLFs in mechanical and thermal properties. Combining these fibers as a hybrid reinforcement in polymeric materials shows promise for multifunctional materials and structures. Functionalizing these composites with graphene-based materials could lead to superior properties. This research optimized the tensile and impact resistance of a jute/aramid/HDPE hybrid nanocomposite by the addition of graphene nanoplatelets (GNP). The hybrid structure with 10 jute/10 aramid layers and 0.10 wt.% GNP exhibited a 2433% increase in mechanical toughness, a 591% increase in tensile strength, and a 462% reduction in ductility compared to neat jute/HDPE composites. A SEM analysis revealed the influence of GNP nano-functionalization on the failure mechanisms of these hybrid nanocomposites.

3.
Bioelectrochemistry ; 147: 108176, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35779517

RESUMO

The present research refers to elaborating a new label-free electrochemical biosensor used to detect the BCR/ABL fusion gene. We used a hybrid nanocomposite composed of chitosan and zinc oxide nanoparticles (Chit-ZnONP) immobilized on a polypyrrole (PPy) film. DNA segments were covalently immobilized, allowing biomolecular recognition. Atomic force microscopy (AFM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used to evaluate the assembly stages of the biosensor. The biosensor's analytical performance was investigated using recombinant plasmids containing the target oncogene and clinical samples from patients with chronic myeloid leukemia (CML). A limit of detection (LOD) of 1.34 fM, limit of quantification (LOQ) of 4.08 fM, and sensitivity of 34.03 µA fM-1 cm2 were calculated for the BCR/ABL fusion oncogene. The sensing system exhibited high specificity, selectivity, and reproducibility with a standard deviation (SD) of 4.21%. Additionally, a linear response range was observed between 138.80 aM to 13.88 pM with a regression coefficient of 0.96. Also, the biosensor shows easy operationalization and fast analytical response, contributing to the early cancer diagnosis. The proposed nanostructured device is an alternative for the genetic identification BCR/ABL fusion gene.


Assuntos
Técnicas Biossensoriais , Leucemia Mielogênica Crônica BCR-ABL Positiva , Nanocompostos , Técnicas Biossensoriais/métodos , DNA/genética , Técnicas Eletroquímicas/métodos , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Nanocompostos/química , Polímeros/química , Pirróis , Reprodutibilidade dos Testes
4.
Carbohydr Polym ; 197: 100-108, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30007594

RESUMO

We examined the properties of the nanocomposite γ-Fe2O3@Chi@Pani as an adsorbent of deoxyribonucleic acid (DNA). As a model system, we used an aqueous solution of salmon sperm DNA, whose decreasing concentration was followed by monitoring the 260 nm UV-vis absorption. After adjusting the data collected to a Langmuir isotherm curve, we estimated the adsorption capacity (qe) of the nanocomposite as 49.5 mg/g. We also observed that the kinetic model of the DNA capture presents a mixed character, with both chemical mechanisms and intraparticle diffusion processes involved. When the MNC was used to extract the DNA from complex samples (human blood), a capture rate of 80 ng/µL was achieved, with the collected fraction exhibiting good quality, as evaluated by PCR analysis and electrophoresis assays. These results suggest that the γ-Fe2O3@Chi@Pani nanocomposite is a promising adsorbent for use in protocols for purification of DNA from complex samples.


Assuntos
Compostos de Anilina/química , Quitosana/química , DNA/isolamento & purificação , Compostos Férricos/química , Nanopartículas de Magnetita/química , Nanocompostos/química , DNA/sangue , DNA/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA