Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1090222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228842

RESUMO

Rabies is a neglected disease that affects all mammals. To determine the appropriate sanitary measures, the schedule of preventive medicine campaigns requires the proper identification of the variants of the virus circulating in the outbreaks, the species involved, and the interspecific and intraspecific virus movements. Urban rabies has been eradicated in developed countries and is being eradicated in some developing countries. In Europe and North America, oral vaccination programs for wildlife have been successful, whereas in Latin America, Asia, and Africa, rabies remains a public health problem due to the habitation of a wide variety of wild animal species that can act as rabies virus reservoirs in their environment. After obtaining recognition from the WHO/PAHO as the first country to eliminate human rabies transmitted by dogs, Mexico faces a new challenge: the control of rabies transmitted by wildlife to humans and domestic animals. In recent years, rabies outbreaks in the white-nosed coati (Nasua narica) have been detected, and it is suspected that the species plays a significant role in maintaining the wild cycle of rabies in the southeast of Mexico. In this study, we discussed cases of rabies in white-nosed coatis that were diagnosed at InDRE (in English: Institute of Epidemiological Diagnosis and Reference; in Spanish: Instituto de Diagnostico y Referencia Epidemiologicos) from 1993 to 2022. This study aimed to determine whether white-nosed coatis might be an emergent rabies reservoir in the country. A total of 13 samples were registered in the database from the Rabies laboratories of Estado de Mexico (n = 1), Jalisco (n = 1), Quintana Roo (n = 5), Sonora (n = 1), and Yucatan (n = 5). Samples from 1993 to 2002 from Estado de Mexico, Jalisco, and Sonora were not characterized because we no longer had any samples available. Nine samples were antigenically and genetically characterized. To date, coatis have not been considered important vectors of the rabies virus. The results from our research indicate that the surveillance of the rabies virus in coatis should be relevant to prevent human cases transmitted by this species.

2.
Transbound Emerg Dis ; 69(4): 1727-1738, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33963679

RESUMO

This study evaluates through modelling the possible individual and combined effect of three populational parameters of pathogens (reproduction rate; rate of novelty emergence; and propagule size) on the colonization of new host species-putatively the most fundamental process leading to the emergence of new infectious diseases. The results are analysed under the theoretical framework of the Stockholm Paradigm using IBM simulations to better understand the evolutionary dynamics of the pathogen population and the possible role of Ecological Fitting. The simulations suggest that all three parameters positively influence the success of colonization of new hosts by a novel parasite population, but contrary to the prevailing belief, the rate of novelty emergence (e.g. mutations) is the least important factor. Maximization of all parameters results in a synergetic facilitation of the colonization and emulates the expected scenario for pathogenic microorganisms. The simulations also provide theoretical support for the retention of the capacity of fast-evolving lineages to retro-colonize their previous host species/lineage by ecological fitting. Capacity is, thus, much larger than we can anticipate. Hence, the results support the empirical observations that opportunity of encounter (i.e. the breakdown in mechanisms for ecological isolation) is a fundamental determinant to the emergence of new associations-especially Emergent Infectious Diseases-and the dynamics of host exploration, as observed in SARS-CoV-2. Insights on the dynamics of Emergent Infectious Diseases derived from the simulations and from the Stockholm Paradigm are discussed.


Assuntos
COVID-19 , Doenças Transmissíveis , Acidentes , Animais , COVID-19/epidemiologia , COVID-19/veterinária , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/veterinária , Interações Hospedeiro-Parasita , SARS-CoV-2/genética
3.
Emerg Infect Dis ; 25(11): 2156-2158, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31625847

RESUMO

Diphyllobothriosis is a reemerging zoonotic disease because of global trade and increased popularity of eating raw fish. We present molecular evidence of host switching of a human-infecting broad fish tapeworm, Dibothriocephalus latus, and use of salmonids as intermediate or paratenic hosts and thus a source of human infection in South America.


Assuntos
Difilobotríase , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Interações Hospedeiro-Parasita , Salmonidae/parasitologia , Zoonoses/epidemiologia , Animais , Doenças dos Peixes/diagnóstico , Humanos , América do Sul/epidemiologia
4.
Parasitology ; 144(13): 1763-1768, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28679457

RESUMO

Paleoparasitological examination provides information of parasite-host associations in the past, shedding light on the geographical origin of some parasites, on the possible dispersal routes and on some of the processes that modelled the parasitic communities. The aim of the present study was to examine parasite remains present in camelid coprolites collected from the archaeological site Alero Destacamento Guardaparque, Patagonia and to discuss the paleoparasitological findings in a biogeographical and paleoecological context. Coprolites were collected from different stratified layers dating from middle to late Holocene, a period covering approximately 7000 years. Paleoparasitological examination revealed the presence of eggs attributed to Lamanema chavezi or Nematodirus lamae, Nematodirus spathiger, Dictyocaulus sp., eggs of two unidentified capillariids, Strongylus-type eggs and oocysts of Eimeria macusaniensis. Enteric parasites of camelids had not changed significantly during the Holocene up to the entry of introduced livestock, although environmental conditions fluctuated greatly throughout this period, indicating the stability of these associations over time. This is the first finding of N. spathiger and Dictyocaulus sp. in paleoparasitological record and their presence are associated with the interaction of camelids with introduced livestock, which likely allowed parasite host switching. In the present study, the zoonotic importance of parasites of camelids is also discussed.


Assuntos
Camelídeos Americanos , Coccidiose/veterinária , Fezes/parasitologia , Helmintíase Animal/parasitologia , Enteropatias Parasitárias/veterinária , Doenças Parasitárias em Animais/epidemiologia , Animais , Argentina/epidemiologia , Coccidiose/parasitologia , Eimeria/isolamento & purificação , Fósseis , Helmintos/isolamento & purificação , Enteropatias Parasitárias/epidemiologia , Enteropatias Parasitárias/parasitologia , Oocistos/isolamento & purificação , Paleontologia , Doenças Parasitárias em Animais/parasitologia
5.
Parasitology ; 144(7): 984-993, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28290270

RESUMO

Parasites of the genera Plasmodium and Haemoproteus (Apicomplexa: Haemosporida) are a diverse group of pathogens that infect birds nearly worldwide. Despite their ubiquity, the ecological and evolutionary factors that shape the diversity and distribution of these protozoan parasites among avian communities and geographic regions are poorly understood. Based on a survey throughout the Neotropics of the haemosporidian parasites infecting manakins (Pipridae), a family of Passerine birds endemic to this region, we asked whether host relatedness, ecological similarity and geographic proximity structure parasite turnover between manakin species and local manakin assemblages. We used molecular methods to screen 1343 individuals of 30 manakin species for the presence of parasites. We found no significant correlations between manakin parasite lineage turnover and both manakin species turnover and geographic distance. Climate differences, species turnover in the larger bird community and parasite lineage turnover in non-manakin hosts did not correlate with manakin parasite lineage turnover. We also found no evidence that manakin parasite lineage turnover among host species correlates with range overlap and genetic divergence among hosts. Our analyses indicate that host switching (turnover among host species) and dispersal (turnover among locations) of haemosporidian parasites in manakins are not constrained at this scale.


Assuntos
Doenças das Aves/epidemiologia , Haemosporida/fisiologia , Interações Hospedeiro-Parasita , Malária/veterinária , Passeriformes , Infecções Protozoárias em Animais/epidemiologia , Animais , Doenças das Aves/parasitologia , Citocromos b/genética , Haemosporida/genética , Malária/epidemiologia , Malária/parasitologia , Panamá/epidemiologia , Filogenia , Plasmodium/genética , Plasmodium/fisiologia , Prevalência , Infecções Protozoárias em Animais/parasitologia , Proteínas de Protozoários/genética , América do Sul/epidemiologia
6.
Ann Bot ; 118(6): 1101-1111, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27539600

RESUMO

BACKGROUND AND AIMS: The broomrapes, Orobanche sensu lato (Orobanchaceae), are common root parasites found across Eurasia, Africa and the Americas. All species native to the western hemisphere, recognized as Orobanche sections Gymnocaulis and Nothaphyllon, form a clade that has a centre of diversity in western North America, but also includes four disjunct species in central and southern South America. The wide ecological distribution coupled with moderate taxonomic diversity make this clade a valuable model system for studying the role, if any, of host-switching in driving the diversification of plant parasites. METHODS: Two spacer regions of ribosomal nuclear DNA (ITS + ETS), three plastid regions and one low-copy nuclear gene were sampled from 163 exemplars of Orobanche from across the native geographic range in order to infer a detailed phylogeny. Together with comprehensive data on the parasites' native host ranges, associations between phylogenetic lineages and host specificity are tested. KEY RESULTS: Within the two currently recognized species of O. sect. Gymnocaulis, seven strongly supported clades were found. While commonly sympatric, members of these clades each had unique host associations. Strong support for cryptic host-specific diversity was also found in sect. Nothaphyllon, while other taxonomic species were well supported. We also find strong evidence for multiple amphitropical dispersals from central North America into South America. CONCLUSIONS: Host-switching is an important driver of diversification in western hemisphere broomrapes, where host specificity has been grossly underestimated. More broadly, host specificity and host-switching probably play fundamental roles in the speciation of parasitic plants.


Assuntos
Orobanche/fisiologia , Biodiversidade , América Central , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Ecologia , América do Norte , Orobanche/genética , Filogenia , Plastídeos/genética , Alinhamento de Sequência , Análise de Sequência de DNA , América do Sul
7.
J Anim Ecol ; 84(2): 487-97, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25283218

RESUMO

Because host-parasite interactions are so ubiquitous, it is of primary interest for ecologists to understand the factors that generate, maintain and constrain these associations. Phylogenetic comparative studies have found abundant evidence for host-switching to relatively unrelated hosts, sometimes related to diversification events, in a variety of host-parasite systems. For Monogenoidea (Platyhelminthes) parasites, it has been suggested that the co-speciation model alone cannot explain host occurrences, hence host-switching and/or non-vicariant modes of speciation should be associated with the origins and diversification of several monogenoid taxa. The factors that shape broad patterns of parasite sharing were investigated using path analysis as a way to generate hypotheses about the origins of host-parasite interactions between monogenoid gill parasites and Neotropical freshwater fishes. Parasite sharing was assessed from an interaction matrix, and explanatory variables included phylogenetic relationships, environmental preferences, biological traits and geographic distribution for each host species. Although geographic distribution of hosts and host ecology are important factors to understand host-parasite interactions, especially within host lineages that share a relatively recent evolutionary history, phylogeny had the strongest overall direct effect on parasite sharing. Phylogenetic contiguity of host communities may allow a 'stepping-stone' mode of host-switching, which increases parasite sharing. Our results reinforce the importance of including evolutionary history in the study of ecological associations, including emerging infectious diseases risk assessment.


Assuntos
Doenças dos Peixes/parasitologia , Trematódeos/fisiologia , Animais , Ecossistema , Doenças dos Peixes/epidemiologia , Geografia , Brânquias/parasitologia , Filogenia , Rios , Infecções por Trematódeos/epidemiologia
8.
Proc Natl Acad Sci U S A ; 111(41): 14816-21, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25271324

RESUMO

The malaria parasites (Apicomplexa: Haemosporida) of birds are believed to have diversified across the avian host phylogeny well after the origin of most major host lineages. Although many symbionts with direct transmission codiversify with their hosts, mechanisms of species formation in vector-borne parasites, including the role of host shifting, are poorly understood. Here, we examine the hosts of sister lineages in a phylogeny of 181 putative species of malaria parasites of New World terrestrial birds to determine the role of shifts between host taxa in the formation of new parasite species. We find that host shifting, often across host genera and families, is the rule. Sympatric speciation by host shifting would require local reproductive isolation as a prerequisite to divergent selection, but this mechanism is not supported by the generalized host-biting behavior of most vectors of avian malaria parasites. Instead, the geographic distribution of individual parasite lineages in diverse hosts suggests that species formation is predominantly allopatric and involves host expansion followed by local host-pathogen coevolution and secondary sympatry, resulting in local shifting of parasite lineages across hosts.


Assuntos
Evolução Biológica , Haemosporida/fisiologia , Interações Hospedeiro-Parasita , Malária Aviária/parasitologia , Parasitos/fisiologia , Animais , Filogenia , Especificidade da Espécie , Simpatria , Índias Ocidentais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA