Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 916210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160194

RESUMO

Rhizosphere microbial communities exert critical roles in plant health, nutrient cycling, and soil fertility. Despite the essential functions conferred by microbes, the source and acquisition of the rhizosphere are not entirely clear. Therefore, we investigated microbial community diversity and potential source using the only two native Antarctic plants, Deschampsia antarctica (Da) and Colobanthus quitensis (Cq), as models. We interrogated rhizosphere and bulk soil microbiomes at six locations in the Byers Peninsula, Livingston Island, Antarctica, both individual plant species and their association (Da.Cq). Our results show that host plant species influenced the richness and diversity of bacterial communities in the rhizosphere. Here, the Da rhizosphere showed the lowest richness and diversity of bacteria compared to Cq and Da.Cq rhizospheres. In contrast, for rhizosphere fungal communities, plant species only influenced diversity, whereas the rhizosphere of Da exhibited higher fungal diversity than the Cq rhizosphere. Also, we found that environmental geographic pressures (i.e., sampling site, latitude, and altitude) and, to a lesser extent, biotic factors (i.e., plant species) determined the species turnover between microbial communities. Moreover, our analysis shows that the sources of the bacterial communities in the rhizosphere were local soils that contributed to homogenizing the community composition of the different plant species growing in the same sampling site. In contrast, the sources of rhizosphere fungi were local (for Da and Da.Cq) and distant soils (for Cq). Here, the host plant species have a specific effect in acquiring fungal communities to the rhizosphere. However, the contribution of unknown sources to the fungal rhizosphere (especially in Da and Da.Cq) indicates the existence of relevant stochastic processes in acquiring these microbes. Our study shows that rhizosphere microbial communities differ in their composition and diversity. These differences are explained mainly by the microbial composition of the soils that harbor them, acting together with plant species-specific effects. Both plant species acquire bacteria from local soils to form part of their rhizosphere. Seemingly, the acquisition process is more complex for fungi. We identified a significant contribution from unknown fungal sources due to stochastic processes and known sources from soils across the Byers Peninsula.

2.
Bio Protoc ; 10(8): e3588, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33659555

RESUMO

Plants recognize a wide variety of microbial molecules to detect and respond to potential invaders. Recognition of Microbe-Associated Molecular Patterns (MAMPs) by cell surface receptors initiate a cascade of biochemical responses that include, among others, ion fluxes across the plasma membrane. A consequence of such event is a decrease in the concentration of extracellular H+ ions, which can be experimentally detected in plant cell suspensions as a shift in the pH of the medium. Thus, similarly to reactive oxygen species (ROS) accumulation, phosphorylation of MAP kinases and induction of defense-related genes, MAMP-induced medium alkalinization can be used as a proxy for the activation of plant immune responses. Here, we describe a detailed protocol for the measurement of medium alkalinization of tobacco BY-2 cell suspensions upon treatment with two different MAMPs: chitohexamers derived from fungal cell walls (NAG6; N-acetylglucosamine) and the flagellin epitope flg22, found in the bacterial flagellum. This method provides a reliable and fast platform to access MAMP-Triggered Immunity (MTI) in tobacco cell suspensions and can be easily adapted to other plant species as well as to other MAMPs.

3.
Front Microbiol ; 11: 601921, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552015

RESUMO

Although originally known as an opportunistic pathogen, Klebsiella pneumoniae has been considered a worldwide health threat nowadays due to the emergence of hypervirulent and antibiotic-resistant strains capable of causing severe infections not only on immunocompromised patients but also on healthy individuals. Fimbriae is an essential virulence factor for K. pneumoniae, especially in urinary tract infections (UTIs), because it allows the pathogen to adhere and invade urothelial cells and to form biofilms on biotic and abiotic surfaces. The importance of fimbriae for K. pneumoniae pathogenicity is highlighted by the large number of fimbrial gene clusters on the bacterium genome, which requires a coordinated and finely adjusted system to control the synthesis of these structures. In this work, we describe KpfR as a new transcriptional repressor of fimbrial expression in K. pneumoniae and discuss its role in the bacterium pathogenicity. K. pneumoniae with disrupted kpfR gene exhibited a hyperfimbriated phenotype with enhanced biofilm formation and greater adhesion to and replication within epithelial host cells. Nonetheless, the mutant strain was attenuated for colonization of the bladder in a murine model of urinary tract infection. These results indicate that KpfR is an important transcriptional repressor that, by negatively controlling the expression of fimbriae, prevents K. pneumoniae from having a hyperfimbriated phenotype and from being recognized and eliminated by the host immune system.

4.
Mol Nutr Food Res ; 63(3): e1800947, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30513548

RESUMO

SCOPE: Greater than 68% of young infants are exposed to dietary zinc (Zn) levels that are higher than the Tolerable Upper Intake Limit. However, the consequences of excess dietary Zn during early life on intestinal function and host-microbe interactions are unknown. METHODS AND RESULTS: Neonatal mice are gavaged with 100 Zn µg d-1 from postnatal day (PN) 2 through PN10 and indices of intestinal function and host-microbe interactions are compared to unsupplemented mice. Excess dietary Zn causes oxidative stress, increases goblet cell number and mucus production, and are associated with increased intestinal permeability and systemic inflammation. Over 900 genes are differentially expressed; 413 genes display a fold-change >1.60. The Gene Ontology Biological processes most significantly affected include biological adhesion, the immune system, metabolic processes, and response to stimulus. Key genes most highly and significantly upregulated include ALDH2, MT1, TMEM6, CDK20, and COX62b, while CALU, ST3GAL4, CRTC2, SLC28A2, and COMMA1 are downregulated. These changes are associated with a microbiome enriched in pathogenic taxa including Pseudomonadales and Campylobacter, and greater expression of bacterial stress response genes. CONCLUSION: Excess dietary Zn may have unforeseen influences on epithelial signaling pathways, barrier function, and luminal ecology in the intestine that may have long-term consequences on intestinal health.


Assuntos
Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Estresse Oxidativo , Zinco/administração & dosagem , Animais , Animais Recém-Nascidos , Disbiose , Enterocolite Necrosante/etiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade
5.
BMC Genomics ; 19(1): 701, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30249182

RESUMO

BACKGROUND: Life in the ocean will increasingly have to contend with a complex matrix of concurrent shifts in environmental properties that impact their physiology and control their life histories. Rhodoliths are coralline red algae (Corallinales, Rhodophyta) that are photosynthesizers, calcifiers, and ecosystem engineers and therefore represent important targets for ocean acidification (OA) research. Here, we exposed live rhodoliths to near-future OA conditions to investigate responses in their photosynthetic capacity, calcium carbonate production, and associated microbiome using carbon uptake, decalcification assays, and whole genome shotgun sequencing metagenomic analysis, respectively. The results from our live rhodolith assays were compared to similar manipulations on dead rhodolith (calcareous skeleton) biofilms and water column microbial communities, thereby enabling the assessment of host-microbiome interaction under climate-driven environmental perturbations. RESULTS: Under high pCO2 conditions, live rhodoliths exhibited positive physiological responses, i.e. increased photosynthetic activity, and no calcium carbonate biomass loss over time. Further, whereas the microbiome associated with live rhodoliths remained stable and resembled a healthy holobiont, the microbial community associated with the water column changed after exposure to elevated pCO2. CONCLUSIONS: Our results suggest that a tightly regulated microbial-host interaction, as evidenced by the stability of the rhodolith microbiome recorded here under OA-like conditions, is important for host resilience to environmental stress. This study extends the scarce comprehension of microbes associated with rhodolith beds and their reaction to increased pCO2, providing a more comprehensive approach to OA studies by assessing the host holobiont.


Assuntos
Microbiota , Rodófitas/microbiologia , Biodiversidade , Concentração de Íons de Hidrogênio , Metagenoma , Microbiota/genética , Oceanos e Mares , Fotossíntese , Rodófitas/metabolismo , Rodófitas/fisiologia , Água do Mar/química , Água do Mar/microbiologia , Estresse Fisiológico
6.
mSystems ; 3(3)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29963639

RESUMO

Blastocystis is the most prevalent protist of the human intestine, colonizing approximately 20% of the North American population and up to 100% in some nonindustrialized settings. Blastocystis is associated with gastrointestinal and systemic disease but can also be an asymptomatic colonizer in large populations. While recent findings in humans have shown bacterial microbiota changes associated with this protist, it is unknown whether these occur due to the presence of Blastocystis or as a result of inflammation. To explore this, we evaluated the fecal bacterial and eukaryotic microbiota in 156 asymptomatic adult subjects from a rural population in Xoxocotla, Mexico. Colonization with Blastocystis was strongly associated with an increase in bacterial alpha diversity and broad changes in beta diversity and with more discrete changes to the microbial eukaryome. More than 230 operational taxonomic units (OTUs), including those of dominant species Prevotella copri and Ruminococcus bromii, were differentially abundant in Blastocystis-colonized individuals. Large functional changes accompanied these observations, with differential abundances of 202 (out of 266) predicted metabolic pathways (PICRUSt), as well as lower fecal concentrations of acetate, butyrate, and propionate in colonized individuals. Fecal calprotectin was markedly decreased in association with Blastocystis colonization, suggesting that this ecological shift induces subclinical immune consequences to the asymptomatic host. This work is the first to show a direct association between the presence of Blastocystis and shifts in the gut bacterial and eukaryotic microbiome in the absence of gastrointestinal disease or inflammation. These results prompt further investigation of the role Blastocystis and other eukaryotes play within the human microbiome. IMPORTANCE Given the results of our study and other reports of the effects of the most common human gut protist on the diversity and composition of the bacterial microbiome, Blastocystis and, possibly, other gut protists should be studied as ecosystem engineers that drive community diversity and composition.

7.
Parasit Vectors ; 11(1): 229, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29622036

RESUMO

BACKGROUND: Vector control is critical in reducing the disease burden caused by mosquitoes, and insecticides are an effective tool to control vector populations. Resistance to common insecticides is now widespread, and novel classes of insecticides are needed. In previous work, we described the mosquitocidal activity of Chromobacterium sp. Panama (C.sp_P), a bacterium found in association with mosquitoes in natural populations. In the current work, we further explored the effects of exposure to the bacterium on mosquito fitness and mosquito physiology. RESULTS: We found that C.sp_P has mosquitocidal activity against a broad range of mosquito taxa. When exposed to C.sp_P as adults, female An. gambiae suffered reduced longevity, but experienced no change in fecundity. The offspring of these females, however, had higher mortality as larvae and were slower to develop compared to offspring of control females. We also found that the mosquitocidal activity of C.sp_P was retained after removal of live cells from biofilm culture media, suggesting the bacteria secrete mosquitocidal compound(s) into the media during growth. Exposure to this cell-free C.sp_P-conditioned media caused female midgut transcriptional changes comprising detoxification, xenobiotic response, and stress response genes, suggesting the physiological response to C.sp_P is similar to that of insecticide exposure. Finally, we found that multiple members of the Chromobacterium genus had mosquitocidal activity, but this activity was highest in mosquitoes treated with C.sp_P. CONCLUSIONS: Our findings suggest that C.sp_P produces factor(s) with strong effects on mosquito longevity and fitness, which may be of interest for mosquitocide development. More generally, they indicate that further exploration of mosquito-associated and environmental microbes for novel insecticidal compounds or biocontrol agents is warranted.


Assuntos
Anopheles/microbiologia , Chromobacterium/fisiologia , Controle de Mosquitos/métodos , Mosquitos Vetores/microbiologia , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , Anopheles/fisiologia , Meios de Cultura/química , Meios de Cultura/farmacologia , Feminino , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Inativação Metabólica , Resistência a Inseticidas , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Larva/genética , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Mosquitos Vetores/fisiologia , Piretrinas/farmacologia
8.
Immunology ; 149(4): 374-385, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27479869

RESUMO

Periodontitis is a chronic inflammatory condition characterized by destruction of non-mineralized and mineralized connective tissues. It is initiated and maintained by a dysbiosis of the bacterial biofilm adjacent to teeth with increased prevalence of Gram-negative microorganisms. Nucleotide-binding oligomerization domain containing 1 (NOD1) is a member of the Nod-like receptors (NLRs) family of proteins that participate in the activation of the innate immune system, in response to invading bacteria or to bacterial antigens present in the cytoplasm. The specific activating ligand for NOD1 is a bacterial peptidoglycan derived primarily from Gram-negative bacteria. This study assessed the role of NOD1 in inflammation-mediated tissue destruction in the context of host-microbe interactions. We used mice with whole-genome deletion of the NOD1 gene in a microbe-induced periodontitis model using direct injections of heat-killed Gram-negative or Gram-negative/Gram-positive bacteria on the gingival tissues. In vitro experiments using primary bone-marrow-derived macrophages from wild-type and NOD1 knockout mice provide insight into the role of NOD1 on the macrophage response to Gram-negative and Gram-negative/Gram-positive bacteria. Microcomputed tomography analysis indicated that deletion of NOD1 significantly aggravated bone resorption induced by Gram-negative bacteria, accompanied by an increase in the numbers of osteoclasts. This effect was significantly attenuated by the association with Gram-positive bacteria. In vitro, quantitative PCR arrays indicated that stimulation of macrophages with heat-killed Gram-negative bacteria induced the same biological processes in wild-type and NOD1-deficient cells; however, expression of pro-inflammatory mediators was increased in NOD1-deficient cells. These results suggest a bone-sparing role for NOD1 in this model.


Assuntos
Aggregatibacter actinomycetemcomitans/imunologia , Reabsorção Óssea/imunologia , Gengiva/imunologia , Limosilactobacillus fermentum/imunologia , Macrófagos/fisiologia , Proteína Adaptadora de Sinalização NOD1/metabolismo , Doenças Periodontais/imunologia , Animais , Antígenos de Bactérias/imunologia , Reabsorção Óssea/microbiologia , Células Cultivadas , Modelos Animais de Doenças , Gengiva/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD1/genética , Osteoclastos/patologia , Doenças Periodontais/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA