RESUMO
Introduction: Spider venoms are a unique source of bioactive peptides, many of which display remarkable biological stability and neuroactivity. Phoneutria nigriventer, often referred to as the Brazilian wandering spider, banana spider or "armed" spider, is endemic to South America and amongst the most dangerous venomous spiders in the world. There are 4,000 envenomation accidents with P. nigriventer each year in Brazil, which can lead to symptoms including priapism, hypertension, blurred vision, sweating, and vomiting. In addition to its clinical relevance, P. nigriventer venom contains peptides that provide therapeutic effects in a range of disease models. Methods: In this study, we explored the neuroactivity and molecular diversity of P. nigriventer venom using fractionation-guided high-throughput cellular assays coupled to proteomics and multi-pharmacology activity to broaden the knowledge about this venom and its therapeutic potential and provide a proof-of-concept for an investigative pipeline to study spider-venom derived neuroactive peptides. We coupled proteomics with ion channel assays using a neuroblastoma cell line to identify venom compounds that modulate the activity of voltage-gated sodium and calcium channels, as well as the nicotinic acetylcholine receptor. Results: Our data revealed that P. nigriventer venom is highly complex compared to other neurotoxin-rich venoms and contains potent modulators of voltage-gated ion channels which were classified into four families of neuroactive peptides based on their activity and structures. In addition to the reported P. nigriventer neuroactive peptides, we identified at least 27 novel cysteine-rich venom peptides for which their activity and molecular target remains to be determined. Discussion: Our findings provide a platform for studying the bioactivity of known and novel neuroactive components in the venom of P. nigriventer and other spiders and suggest that our discovery pipeline can be used to identify ion channel-targeting venom peptides with potential as pharmacological tools and to drug leads.
RESUMO
A high-throughput screening (HTS) campaign was carried out for Trypanosoma cruzi glucokinase (TcGlcK), a potential drug-target of the pathogenic protozoan parasite. Glycolysis and the pentose phosphate pathway (PPP) are important metabolic pathways for T. cruzi and the inhibition of the glucose kinases (i.e. glucokinase and hexokinase) may be a strategic approach for drug discovery. Glucose kinases phosphorylate d-glucose with co-substrate ATP to yield G6P, and moreover, the produced G6P enters both pathways for catabolism. The TcGlcK - HTS campaign revealed 25 novel enzyme inhibitors that were distributed in nine chemical classes and were discovered from a primary screen of 13,040 compounds. Thirteen of these compounds were found to have low micromolar IC50 enzyme - inhibition values; strikingly, four of those compounds exhibited low toxicity towards NIH-3T3 murine host cells and notable in vitro trypanocidal activity. These compounds were of three chemical classes: (a) the 3-nitro-2-phenyl-2H-chromene scaffold, (b) the N-phenyl-benzenesulfonamide scaffold, and (c) the gossypol scaffold. Two compounds from the 3-nitro-2-phenyl-2H-chromene scaffold were determined to be hit-to-lead candidates that can proceed further down the early-stage drug discovery process.
Assuntos
Doença de Chagas/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Glucoquinase/uso terapêutico , Ensaios de Triagem em Larga Escala/métodos , Inibidores Enzimáticos/farmacologia , Glucoquinase/farmacologia , Trypanosoma cruziRESUMO
Although the alphavirus Venezuelan equine encephalitis virus (VEEV) has been the cause of multiple outbreaks resulting in extensive human and equine mortality and morbidity, there are currently no anti-VEEV therapeutics available. VEEV pathogenicity is largely dependent on targeting of the viral capsid protein (CP) to the host cell nucleus through the nuclear transporting importin (Imp) α/ß1 heterodimer. Here we perform a high-throughput screen, combined with nested counterscreens to identify small molecules able to inhibit the Impα/ß1:CP interaction for the first time. Several compounds were able to significantly reduce viral replication in infected cells. Compound G281-1564 in particular could inhibit VEEV replication at low µM concentration, while showing minimal toxicity, with steady state and dynamic quantitative microscopic measurements confirming its ability to inhibit CP nuclear import. This study establishes the principle that inhibitors of CP nucleocytoplasmic trafficking can have potent antiviral activity against VEEV, and represents a platform for future development of safe anti-VEEV compounds with high efficacy and specificity.