Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Environ Sci Health B ; 59(2): 50-61, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38054847

RESUMO

In this work, a comparison was made between the synthesis of niobium-based materials (Nb2O5), both in terms of material characterization and catalytic performance. The methods used were chemical mixtures: modified sol-gel and Pechini. The materials were calcined at different temperatures (753, 873 and 993K) and characterized by the following techniques: photoacousticspectroscopy (PAS), zero charge point (pHPZC), scanning electron microscopy (SEM/EDS), thermogravimetric analysis (TGA/DTG) and X-ray diffraction (XRD). The photocatalytic process was carried out to evaluate the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under UV radiation (250 W mercury vapor lamp) and different experimental conditions. In addition, to better understand the influence of parameters such as pH, catalyst concentration (0.2, 0.5 and 0.8 g L-1) and calcination temperature, a Design of Experiments (DoE) was used. The results indicated that despite having similar structures and phases in the XRD analysis, the morphology presents two distinct surfaces, due to the preparation method. Differences in the synthesis method affected the catalytic activity in the parameters studied. Although the zero charge point values are close (6.18-6.36), we observed differences in the band gap depending on the calcination temperature. In the optimal condition studied, the catalyst prepared by the sol-gel method obtained the best results.


Assuntos
Herbicidas , Nióbio/química , Raios Ultravioleta , Microscopia Eletrônica de Varredura , Ácido 2,4-Diclorofenoxiacético
2.
Heliyon ; 9(10): e20809, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37860572

RESUMO

In the herein report, we synthesized ZnO thin films doped with manganese (Mn). We studied the impact of Mn doping loads (1 %, 3 %, 5 % wt.) on physicochemical properties of the compounds. Furthermore, we presented the photocatalytic efficiency in removal of methylene blue dye. The structural assay indicated ZnO conserve the wurtzite crystalline structure after dopant insertion. Furthermore, the crystalline size of catalysts was reduced after dopant incorporation. The SEM analysis showed a change in surface morphology after modification of ZnO thin films. Furthermore, Raman spectroscopy verified the Mn insertion inside the ZnO lattice. After the doping process, band gap was reduced by 16 %, in comparison to bare ZnO. After the photocatalytic test, the doped catalysts showed better performance than bare ZnO in removing MB. The best test showed a kinetics constant value of 2.9 × 10-3 min-1 after 120 min of visible irradiation. Finally, the Mn(5 %):ZnO thin film was suitable after five degradation cycles, and the degradation process efficiency was reduced by 32%.

3.
Toxics ; 11(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37624163

RESUMO

The improper disposal of toxic and carcinogenic organic substances resulting from the manufacture of dyes, drugs and pesticides can contaminate aquatic environments and potable water resources and cause serious damage to animal and human health and to the ecosystem. In this sense, heterogeneous photocatalysis stand out as one effective and cost-effective water depollution technique. The use of metal oxide nanocomposites (MON), from the mixture of two or more oxides or between these oxides and other functional semiconductor materials, have gained increasing attention from researchers and industrial developers as a potential alternative to produce efficient and environmentally friendly photocatalysts for the remediation of water contamination by organic compounds. Thus, this work presents an updated review of the main advances in the use of metal oxide nanocomposites-based photocatalysts for decontamination of water polluted by these substances. A bibliometric analysis allowed to show the evolution of the importance of this research topic in the literature over the last decade. The results of the study also showed that hierarchical and heterogeneous nanostructures of metal oxides, as well as conducting polymers and carbon materials, currently stand out as the main materials for the synthesis of MON, with better photocatalysis performance in the degradation of dyes, pharmaceuticals and pesticides.

4.
Chemosphere ; 338: 139490, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37451641

RESUMO

Chemical oxidation technologies have been notably used for the mineralization of organic pollutants from aqueous effluents, been especially relevant for the degradation of pesticides. In this context, both tebuconazole (TEB) and 2,4-dichlorophenoxyacetic acid (2,4-D) pesticides were photodegraded by a combined catalyst of TiO2 and silver nanoparticles irradiated by UV-A light (λmax = 368 nm), and the experiments were tracked by surface-enhanced Raman scattering (SERS) spectroscopy. For 2,4-D, the degradation of about 70% was observed after almost 200 min, while for TEB, a decrease of 80% of the initial concentration was observed after approximately 100 min. The SERS monitoring allowed the proposal of some by-products, such as oxidized aliphatic chain and triazole from TEB besides glycolic, glyoxylic and dihydroxyacetic acids from 2,4-D. Their toxicities were predicted through ECOSAR software, verifying that most of them were not harmful to populations of fish, Daphnia and green algae. Thus, the performed oxidative process was efficient in the photodecomposition of TEB and 2,4-D pesticides, inclusive in terms of the decreasing of the toxicity of contaminated effluents.


Assuntos
Herbicidas , Nanopartículas Metálicas , Praguicidas , Animais , Nanopartículas Metálicas/química , Prata/química , Titânio/química , Triazóis , Praguicidas/química , Ácido 2,4-Diclorofenoxiacético
5.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298542

RESUMO

Methotrexate (MTX) is a folic acid analog and has been used to treat a wide variety of malignant and non-malignant diseases. The wide use of these substances has led to the continuous discharge of the parent compound and its metabolites in wastewater. In conventional wastewater treatment plants, the removal or degradation of drugs is not complete. In order to study the MTX degradation by photolysis and photocatalysis processes, two reactors were used with TiO2 as a catalyst and UV-C lamps as a radiation source. H2O2 addition was also studied (absence and 3 mM/L), and different initial pHs (3.5, 7, and 9.5) were tested to define the best degradation parameters. Results were analyzed by means of ANOVA and the Tukey test. Results show that photolysis in acidic conditions with 3 mM of H2O2 added is the best condition for MTX degradation in these reactors, with a kinetic constant of 0.028 min-1. According to the ANOVA test, all considered factors (process, pH, H2O2 addition, and experimentation time) caused statistically significant differences in the MTX degradation results.


Assuntos
Metotrexato , Poluentes Químicos da Água , Fotólise , Peróxido de Hidrogênio/química , Raios Ultravioleta , Titânio/química , Águas Residuárias , Poluentes Químicos da Água/química , Oxirredução , Catálise
6.
Environ Sci Pollut Res Int ; 30(28): 72652-72663, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37178297

RESUMO

Due to inadequate treatment and incorrect management, wastewater with dyes has a great toxic potential as an environmental liability, representing a major concern. In this context, this work aims to investigate the potential application of nanostructured powdery systems (nanocapsules and liposomes) in the photodegradation of Rhodamine B (RhB) dye, under UV and visible irradiation. Curcumin nanocapsules and liposomes containing ascorbic acid and ascorbyl palmitate were prepared, characterized, and dried using the spray drying technique. The drying processes of the nanocapsule and the liposome showed yields of 88% and 62%, respectively, and, after aqueous resuspension of the dry powders, it was possible to recover the nanocapsule size (140 nm) and liposome size (160 nm). The dry powders were characterized by Fourier transform infrared spectroscopy (FTIR), N2 physisorption at 77 K, X-ray diffraction (XRD), and diffuse reflectance spectroscopy (DRS-UV). Under UV irradiation, 64.8% and 58.48% of RhB were removed with nanocapsules and liposomes, respectively. While under visible radiation, nanocapsules and liposomes were able to degrade 59.54% and 48.79% of RhB, respectively. Under the same conditions, commercial TiO2 showed degradation of 50.02% (UV) and 42.14% (visible). After 5 cycles of reuse, there was a decrease of about 5% for dry powders under UV irradiation and 7.5% under visible irradiation. Therefore, the nanostructured systems developed have potential application in heterogeneous photocatalysis for the degradation of organic pollutants, such as RhB, as they demonstrated superior photocatalytic performance to commercial catalysts (nanoencapsulated curcumin > ascorbic acid and ascorbyl palmitate liposomal > TiO2).


Assuntos
Curcumina , Nanocápsulas , Pós , Corantes , Lipossomos , Ácido Ascórbico
7.
Artigo em Inglês | MEDLINE | ID: mdl-36772930

RESUMO

In this work, analytical strategies were developed based on the technique of hollow fiber liquid-phase microextraction and chromatographic methods (LC-UV and GC/MS). These methods allowed the identification of the main Bisphenol-A by-products applying heterogeneous photocatalysis in water samples. BPA degradation in this study was in the order of 90%, and the conditions used in the HF-LPME were optimized through 23 factorial design (6 cm fiber length, stirring speed of 750 rpm, and an extraction time of 30 min). Using a HF-LPME/GC-MS analytical strategy, it was possible to identify six by-products of BPA photodegradation, two of which have not been reported in the literature so far. This knowledge was quite important since the degradation can lead to the formation of more toxic and persistent by-products than the BPA. With the Toxtree software, three degradation products were found to be persistent to the environment, in addition to BPA; however, in 360 minutes of reaction, chromatographic peaks of the precursors were not identified, suggesting that there may have been a total degradation of these compounds. The results showed a great application potential of a miniaturized extraction technique to extract and pre-concentrate the degradation products of emerging contaminants.


Assuntos
Poluentes Ambientais , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Líquida , Cromatografia Líquida , Poluentes Ambientais/química
8.
Environ Sci Pollut Res Int ; 30(11): 30358-30370, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36434462

RESUMO

In this work, a hydrothermal method was proposed to fabricate a nanomaterial composed of titanium dioxide and graphene oxide (10 wt%) (TiO2-GO). The GO was synthesized according to the modified Hummers and Offeman method, followed by exfoliation. Several characterization analyses were performed in order to investigate the structure, functional groups, and elemental composition of the nanomaterial. XRD analysis showed that the presence of GO does not change the crystalline structure of TiO2. FTIR evidenced the characteristic peaks present in both precursor materials (TiO2 and GO) and EDX confirmed the presence of GO on the TiO2-GO material. The nanomaterial was used as a photocatalyst in the TWW treatment, where the color and COD removal and the decrease of the characteristic peaks presented in the UV-Vis spectrum were investigated. The dosages of TiO2-GO and pH were studied to find the optimum operating condition. The results revealed that 0.5 g of photocatalyst with an initial pH of 3 achieve the best results under UV-A radiation. The kinetic test shows a COD removal of 87% after 90 min. The reuse test shows a decrease in COD removal after four cycles attributed to the deposition of some oxidized compounds on the catalyst surface. Finally, the efficiency of the photocatalyst was evaluated under solar radiation and it was shown that despite the good results, the performance of the TiO2-GO was better under UV-A radiation.


Assuntos
Descontaminação , Titânio , Titânio/química , Catálise , Têxteis
9.
Photochem Photobiol Sci ; 21(10): 1793-1806, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35788901

RESUMO

The photocatalytic and mechanical performance of TiO2 nanotubular coatings obtained by anodic oxidation of commercial titanium, using an NH4F and 3.5% v/v water in ethylene glycol solution as electrolyte was investigated. After the anodization, the coatings were thermally treated at 450 °C for 2 h. The effects of the anodizing voltage (40-80 V) and NH4F concentration (0.06, 0.15, 0.27 M) on the formation of the nanotube arrays were evaluated. Nanotube diameters (57 to 114 nm), wall thicknesses (4 to 13 nm), and lengths (5 to 17 µm) increased with the anodizing voltage and the NH4F concentration. The photocatalysts were characterized by scanning electron microscopy, glancing incidence X-ray diffraction, and UV-Vis diffuse reflectance spectroscopy. The mechanical properties of the photocatalysts were determined: adhesion using the tape test (ASTM D3359) and erosion resistance through a 3 h accelerated test. The photocatalytic activity of the nanotubes under UV irradiation was evaluated using hexavalent chromium (Cr(VI)) in the presence of ethylenediaminetetraacetic acid (EDTA), using a 1.25 EDTA/Cr(VI) molar ratio solution at pH 2. A complete Cr(VI) transformation after 3 h of irradiation was obtained for all samples, with a better performance than that of an immobilized P25 sample. The photocatalyst obtained with 0.27 M NH4F at 40 V presented a good behavior in adherence and erosion resistance, together with a very good photocatalytic activity. This novel analysis, combining photocatalytic and mechanical tests, proved that the new TiO2 nanotubular coatings could be successfully used as immobilized photocatalysts in photoreactors for water treatment.


Assuntos
Eletrólitos , Titânio , Titânio/química , Ácido Edético , Catálise , Etilenoglicóis
10.
Environ Sci Pollut Res Int ; 29(3): 3794-3807, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34396477

RESUMO

The pollution of wastewater with dyes has become a serious environmental problem around the world. In this context, the work aims to synthesize and characterize a supported nanocatalyst (NZ-180) from rice husk (RH) and alum sludge (AS) incorporating silver (AgNPs@NZ-180) and titanium nanoparticles (TiNPs@NZ-180) for Rhodamine B (RhB) dye degradation, under UV and visible irradiation. Central rotatable composite design (CRCD) was used to determine ideal conditions, using nanocatalyst and dye concentration such as input variables and degradation percentage like response variable. Samples were characterized by XRD, SEM-EDS, N2 porosimetry, DLS, and zeta potential analyses. TiNPs@NZ-180 showed the best photocatalytic activity (62.62 and 50.82% under UV and visible irradiation, respectively). Specific surface area has increased from 35.90 to 418.90 m2 g-1 for NZ-180 and TiNPs@NZ-180, respectively. Photocatalytic performance of TiNPs@NZ-180 has reduced to 8 and 10% after 5 cycles under UV and visible light irradiation. Ideal conditions found by CRCD were 2.75 g L-1 and 20 mg L-1 for nanocatalyst and RhB concentrations, respectively. Therefore, (agro)industrial waste present such an alternative material for application in the removal of wastewater with dyes, which helps in the reduction of the impact of chemicals/pollutants on human and animal health.


Assuntos
Resíduos Industriais , Prata , Animais , Catálise , Corantes , Humanos , Luz , Titânio , Águas Residuárias
11.
Environ Sci Pollut Res Int ; 28(45): 64360-64373, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34304357

RESUMO

This paper aimed to develop a new photocatalytic reactor design with a rotary tree branch structure for wastewater treatment in the textile industry. The brass sheet calcined at 500 °C (B500) was used as the photocatalyst and as a substrate for ZnO nanoparticle immobilization (B500ZnO). The photoreactor performance was evaluated toward the photodegradation of an aqueous solution of Reactive Black 5 dye (AS-RB5), raw wastewater (RW), and treated wastewater (TW). X-ray diffraction (XRD) and scanning electron microscopy (SEM) results illustrated ZnO nanowire formation over B500 and B500ZnO substrates. The bandgap values of these samples were estimated by diffuse reflectance measurements. The effects of dye concentration, the type of radiation, and ZnO NP deposition on the degradation of AS-RB were evaluated. Decreases in chemical oxygen demand (COD) greater than 82% were obtained using solar irradiation and artificial light as the energy source. Regarding calcined brass sheet reutilization, a decrease of 45% in the photocatalytic activity efficiency after 5 cycles was noted due to the effect of photocorrosion of the ZnO nanowires. The photoreaction of the RW and TW effluents showed COD values of 21 and 35%, respectively, which are below the limits established by state environmental control. With respect to RB5 addition to the TW effluent (TW-RB5), a discoloration of 62% was noticed after 3 h of photodegradation. Furthermore, the toxicity tests of the AS-RB5 and TW-RB5 samples did not display toxic intermediates after the photoreaction since 80% of the seeds germinated. Finally, the photoreactor exhibited good performance regarding the decrease in effluent pollutant charge, in addition to the efficient discoloration of RB5 dye.


Assuntos
Indústria Têxtil , Purificação da Água , Catálise , Semicondutores , Árvores
12.
Environ Sci Pollut Res Int ; 28(19): 24216-24223, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33754267

RESUMO

Volatile organic compounds (VOCs) are atmospheric pollutants that can affect human healthy and intensify some environmental problems. Among different techniques to degrade VOCs, heterogeneous photocatalysis has been highlighted. The aim of this research was to obtain high toluene degradation using heterogeneous photocatalysis in the ozone presence (TiO2/O3/UV) and analyze VOC degradation over the reactor length comparing with ozone concentration also over the reactor length. Ozone concentration has influence on toluene degradation; 75% of VOC degradation was reached with 69.0 mgL-1 of O3 meanwhile a degradation of 91% was obtained with 96.2 mgL-1 of O3. Toluene degradation reached a plateau over reactor length at flowrate of 565 mL min-1, which indicates the reactor was oversized in this case. However, it was not observed at 1425 mL min-1. In addition, it was evaluated that O3 concentration and toluene reaction rate decreased over the reactor length.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Catálise , Humanos , Tolueno , Raios Ultravioleta , Compostos Orgânicos Voláteis/análise
13.
Environ Sci Pollut Res Int ; 28(19): 23568-23581, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32474789

RESUMO

This paper presents the synthesis of a hybrid material through the use of natural pozzolan and titanium(IV) isopropoxide using the sol-gel method and its application in the photocatalytic hexavalent chromium reduction. The characterization data indicated a mesoporous material possessing a surface area of 271.7 m2 g-1. The morphology studies (SEM and TEM) showed nanosheet hybrid structures. The analysis of DRUV, FTIR, XRD, and Mössbauer spectroscopy provides a different electronic structure of the synthetized material when compared with the originals, proving the hybridization process between pozzolan and titanium(IV) isopropoxide. The photocatalytic reduction of Cr(VI) to Cr(III) using the hybrid material showed a better performance than conventional photocatalysts (precursor and TiO2-P25). Operational conditions such as chromium initial concentration (0.02-0.20 mM), solution pH (3-6), and type of scavenger (citric or tartaric acid) were evaluated in order to determine the best experimental conditions for the Cr(VI) photoreduction. At their optimum (catalyst load of 15 mg L-1, tartaric acid as scavenger, [scavenger]0/[Cr(VI)]0 M ratio = 3:1, pH 3, and 25 °C), the total photoreduction of 0.20 mM Cr(VI) was achieved in 180 min. The novel hybrid materials synthesized from pozzolan and titanium(IV) isopropoxide showed to be a potential catalyst for the Cr(VI) reduction in aqueous solution. Graphical abstract.


Assuntos
Compostos Organometálicos , Titânio , Catálise , Cromo
14.
Environ Technol ; 42(15): 2335-2349, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31852357

RESUMO

This work investigated the impregnation of Nb2O5 into carbon black (CB) in different ratios and its effect in photocatalytic degradation of real wastewater from a dyeing factory by advanced oxidative processes (AOP). Synthesized catalysts were characterized regarding their crystalline structure (DRX, micro-Raman), morphology (MEV), textural (BET area) and optical properties (bandgap energy by diffuse reflectance) and pH at the point of zero charge (pHpzc). Preliminary tests showed better photodegradation results in the acidic medium after 5 h of irradiation with NCB-0.5 (Nb2O5:CB 0.5:1). Treatment parameters optimization was carried out using response surface methodology based on Box-Behnken experimental design. Catalyst concentration, solution pH and irradiation time were varied, analysing absorbance reduction (285 and 574 nm), COD and TOC removal after treatment as responses. The composite catalyst showed improved photocatalytic activity, attributed to an increase in adsorption capacity and the bandgap narrowing, redshifting the absorption edge wavelength to the visible region, brought by CB impregnation. Optimal conditions were found at 0.250 g L-1 of catalyst, pH 2.0 and 5 h of irradiation, removing 72.19% and 93.52% of absorbance in 285 and 574 nm, respectively, 51.29% of COD and 70.70% of TOC using NCB-0.5.


Assuntos
Nióbio , Águas Residuárias , Catálise , Fuligem , Têxteis
15.
Braz. arch. biol. technol ; Braz. arch. biol. technol;63: e20180614, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1132182

RESUMO

Abstract The organic compound caffeine when detected in environmental matrices such as surface waters and groundwater is considered as an emerging contaminant, in which its effects are still unknown. Therefore, in the present research, zinc oxide-based catalysts impregnated with iron and silver were prepared for the reaction of caffeine degradation by heterogeneous photocatalysis. The wet impregnation method with excess solvent was applied to the preparation of the materials, later they were characterized by adsorption of N2, X-ray diffraction and photoacoustic spectroscopy. Then, the photodegradation, photolysis and adsorption tests were carried out, in which it was observed that only the presence of the radiation or photocatalysts could not sufficiently degrade the caffeine, however when combined radiation with all the catalysts studied here presented degradation above 70% at the end of 300 minutes of the reaction, and the best catalyst studied was that containing 8% Ag in non-calcined ZnO. Thus, these results point out that the methodology employed in this research, both for the preparation of the catalysts and in the process of the photocatalysis reaction, was efficient in the degradation of the emerging contaminant, caffeine, which could later be used for a mixture of other contaminants.


Assuntos
Prata/química , Óxido de Zinco/química , Cafeína/química , Catálise , Processos Fotoquímicos , Adsorção , Reatores Biológicos , Ferro/química
16.
Braz. arch. biol. technol ; Braz. arch. biol. technol;63: e20180573, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1132185

RESUMO

Abstract This work reports the study of the potential application of Zn/TiO2 catalysts, obtained by the sol-gel method, in processes of environmental decontamination through the reactions of photodegradation of textile dye, followed by electrospray mass spectrometry. The catalysts synthesis was performed according to a 2² factorial design with repetition at the central point. The characterization techniques used were: N2 adsorption measurements (BET method), scanning electron microscopy with energy dispersive X-ray (MEV/EDS), X-ray diffraction and point of zero charge (PZC). The photocatalytic tests were performed in batch in the presence of sunlight, and to evaluate the degradation kinetics study, a rapid direct injection electrospray mass spectrometry (DI-ESI-MS) method has been developed. By the photocatalytic tests, the calcination temperature of 400 °C has shown the best results of discoloration for the reactive Orange-122 dye (99.76%) in a reaction time of 2h. The discoloration kinetics were a pseudo-first order, and a statistical analysis was performed to investigate the effects of the variables and to optimize the conditions of discoloration to the dye. After the reactional time of 2 h, an ion of m/z 441.5 was detected by ESI-MS, indicating that the photocatalytic process was effective for the degradation of the dye to secondary compounds.


Assuntos
Compostos Azo/toxicidade , Biodegradação Ambiental , Descontaminação/métodos , Espectrometria de Massas em Tandem/métodos , Recuperação e Remediação Ambiental/métodos , Águas Residuárias , Fotoquímica , Têxteis/toxicidade , Microscopia Eletrônica de Varredura , Catálise , Domínio Catalítico , Espectrometria de Massas por Ionização por Electrospray , Corantes , Fotobiorreatores , Modelos Teóricos
17.
Rev. colomb. quím. (Bogotá) ; 48(3): 19-25, sep.-dic. 2019. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1058424

RESUMO

Resumen En el presente trabajo se evaluó la degradación fotocatalítica del herbicida glifosato en solución acuosa con un catalizador comercial (TiO2 Degussa P25) y un catalizador sintetizado a partir de TiO2 dopado con manganeso (TiO2-Mn), soportados en anillos de borosilicato de diámetro interno y externo de 6,52 mm y 7,59 mm, respectivamente, y una longitud aproximada de 9,43 mm, mediante el uso de un reactor continuo de lecho empacado. El catalizador fue caracterizado por FTIR, SEM-EDS y AFM, con lo cual se determinaron algunas propiedades físicas y químicas del mismo. Las condiciones de operación del reactor fueron un caudal de alimentación de 4,25 mL min-1 de una solución de glifosato de pH natural de 4,45 y un tiempo de retención de 1 h y 25 min, en el cual se llevaron a cabo ensayos de fotocatálisis heterogénea, fotólisis y adsorción por un tiempo de 150 min. De lo anterior, se obtuvieron los porcentajes de remoción y el orden de la reacción fotocatalítica para el catalizador soportado en los anillos. A partir de los estudios de degradación realizados, con el TiO2-Mn soportado en los anillos, se logró un porcentaje máximo de degradación de 39.19%, mientras que, con el catalizador comercial TiO2 Degussa P25, se alcanzó un 28.6% de remoción. El modelo de reacción que sigue la degradación del glifosato es de difusión intrapartícula, debido a los procesos difusivos en los que la molécula de glifosato es adsorbida en los poros del catalizador para luego ser degradada.


Abstract In this work, the photocatalytic degradation of the herbicide glyphosate in aqueous solution was evaluated. Assays were performed on a commercial catalyst (TiO2 Degussa P25) and a catalyst synthesized from TiO2 doped with manganese (TiO2-Mn) supported on borosilicate rings, with an internal and external diameter of 6.52 mm and 7.59 mm respectively, and an approximate length of 9.43 mm, using a continuous packed bed reactor. The synthesized catalyst was characterized with techniques as FTIR, SEM-EDS, and AFM, which allowed to evaluating its chemical and physical properties. The reactor operating conditions were a feed flow rate of 4.25 mL min-1 of a pH 4.45 glyphosate solution and retention time of 1 h and 25 min. In such experiments, heterogeneous photocatalysis, photolysis, and adsorption test were carried out for 150 min, obtaining results of degradation percentages and the order of photocatalytic reaction for the catalyst supported in the rings and the powder in suspension. From the removal studies, a maximum degradation percentage of 39.19% was reached with TiO2-Mn supported in the rings. In contrast, the commercial catalyst TiO2 Degussa P25 had a 28.6% of removal. The glyphosate degradation follows an intraparticle diffusion model due to a diffusive process, where the glyphosate molecule is adsorbed in the catalyst pores and then degraded.


Resumo Neste trabalho, a degradação fotocatalítica de glifosato em solução aquosa foi avaliada com um catalisador comercial (TiO2 Degussa P25) e sintetizado a partir de TiO2 dopado com manganês (Mn-TiO2) com suporte em anéis de borosilicato de diâmetro interno e externo de catalisador 6,52 mm e 7,59 mm, respectivamente e um comprimento de aproximadamente 9,43 mm, usando um leito empacotado reator contínuo. O catalisador sintetizado foi caracterizado com FTIR, SEM-EDS and AFM, o que permitiu a sua morfologia e composição. As condições de operação do reactor foi alimentada à velocidade de 4,25 mL min-1 de uma solução de pH natural de 4,45 glifosato e um tempo de retenção de 1 hora e 25 minutos; em que foram realizados ensaios de fotocatálise heterogénea, fotólise, tempo de adsorção de 150 minutos, obtendo-se como percentagens resultados de remoção e com a reação fotocatalítica para o catalisador suportado em anéis. A partir dos estudos, foi obtido uma taxa máxima de degradação com TiO2-Mn suportado em anéis de 39,19% em comparação com o catalisador comercial de TiO2 Degussa P25 com os quais obtiveram porcentagens de degradação de 28,6%. A degradação do glifosato segue um modelo de difusão intrapartícula devido ao processo difusivo em que a molécula de glifosato é adsorvida no catalisador poros logo a ser degradada.

18.
J Environ Sci Health B ; 54(9): 791-800, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31554463

RESUMO

Sugarcane vinasse is a by-product obtained during ethanol production in sugar-ethanol plants. For each 1 L of ethanol produced approximately 11 L of vinasse are generated. As this residue is obtained in high amounts, it is used as fertilizer in sugarcane crops. However, despite being rich in nutrients, sugarcane vinasse is approximately one hundred times more polluting than domestic sewage, making it an environmental problem. Thus, the aim of the present study was to propose a treatment sequence for sugarcane vinasse and evaluate the possibility of energetic use of the generated sludge in the coagulation/flocculation stage. pH, conductivity, turbidity and decreases in UV/Vis absorption spectra were determined for each treatment step. In addition, the upper calorific value of the generated sludge was also determined, while ash (adsorption treatment) and catalyst (heterogeneous photocatalysis) characterizations were also carried out. At the end of the treatment, initial vinasse turbidity was reduced by 100% and pH and conductivity values were stabilized. The sludge presented a higher calorific value of approximately 3,000 kcal kg-1 and the ash and catalyst displayed favorable characteristics to be applied to the sugarcane vinasse treatment stages.


Assuntos
Fertilizantes/análise , Eliminação de Resíduos/métodos , Saccharum/química , Resíduos/análise , Poluição Ambiental , Saccharum/crescimento & desenvolvimento
19.
Water Environ Res ; 91(11): 1490-1497, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31090990

RESUMO

Azo dyes, common in textile wastewater, have high photolytic and chemical stabilities, which make them difficult to be removed using conventional treatments. This study aims to evaluate a combined process using heterogeneous photocatalysis, with ZnO/UV or TiO2 /UV (0.6 g catalyst L-1 solution/2-hr UV radiation), and a biological process for textile wastewater treatment. After the proposed treatments, the color and organic matter removals from synthetic wastewater (SW) and industrial wastewater (IW) were evaluated. For SW, the coupled photocatalytic (ZnO/UV or TiO2 /UV)-biological system promoted a high extent of color removal (98%) and total organic carbon (TOC) reduction (>80%). Promising results were obtained with IW using combined photocatalytic (TiO2 /UV)-biological treatments, reaching 97% and 63% of color and TOC removal, respectively. This process, coupling heterogeneous photocatalysis and a bioprocess, has proved to be a good alternative for the treatment of textile wastewater, not only for color removal but also for dye mineralization purposes. PRACTITIONER POINTS: A combined process using heterogeneous photocatalysis (ZnO/UV or TiO2 /UV) and biological process was evaluated for synthetic (SW) and industrial (IW) textile wastewaters treatment. For SW, coupled process promoted high extent of colour and organic matter removals. For IW, promising results were obtained with TiO2 /UV-biological treatment (97% of colour and 63% of organic matter removals).


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Catálise , Corantes , Indústria Têxtil , Têxteis , Titânio , Raios Ultravioleta
20.
Environ Sci Pollut Res Int ; 26(5): 4215-4223, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29781061

RESUMO

Photocatalytic degradation of p-Cresol was evaluated using the mixed oxide Bi2O3/TiO2 (containing 2 and 20% wt. Bi2O3 referred as TB2 and TB20) and was compared with bare TiO2 under simulated solar radiation. Materials were prepared by the classic sol-gel method. All solids exhibited the anatase phase by X-ray diffraction (XRD) and Raman spectroscopy. The synthesized materials presented lower crystallite size and Eg value, and also higher surface area as Bi2O3 amount was increased. Bi content was quantified showing near to 70% of theoretical values in TB2 and TB20. Bi2O3 incorporation also was demonstrated by X-ray photoelectron spectroscopy (XPS). Characterization of mixed oxides suggests a homogeneous distribution of Bi2O3 on TiO2 surface. Photocatalytic tests were carried out using a catalyst loading of 1 g L-1 under simulated solar light and visible light. The incorporation of Bi2O3 in TiO2 improved the photocatalytic properties of the synthesized materials obtaining better results with TB20 than the unmodified TiO2 under both radiation sources.


Assuntos
Bismuto/química , Cresóis/análise , Luz , Titânio/química , Poluentes Químicos da Água/análise , Catálise , Fotólise , Luz Solar , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA