Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1434381, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39129788

RESUMO

Alcohol, a toxic and psychoactive substance with addictive properties, severely impacts life quality, leading to significant health, societal, and economic consequences. Its rapid passage across the blood-brain barrier directly affects different brain cells, including astrocytes. Our recent findings revealed the involvement of pannexin-1 (Panx1) and connexin-43 (Cx43) hemichannels in ethanol-induced astrocyte dysfunction and death. However, whether ethanol influences mitochondrial function and morphology in astrocytes, and the potential role of hemichannels in this process remains poorly understood. Here, we found that ethanol reduced basal mitochondrial Ca2+ but exacerbated thapsigargin-induced mitochondrial Ca2+ dynamics in a concentration-dependent manner, as evidenced by Rhod-2 time-lapse recordings. Similarly, ethanol-treated astrocytes displayed increased mitochondrial superoxide production, as indicated by MitoSox labeling. These effects coincided with reduced mitochondrial membrane potential and increased mitochondrial fragmentation, as determined by MitoRed CMXRos and MitoGreen quantification, respectively. Crucially, inhibiting both Cx43 and Panx1 hemichannels effectively prevented all ethanol-induced mitochondrial abnormalities in astrocytes. We speculate that exacerbated hemichannel activity evoked by ethanol may impair intracellular Ca2+ homeostasis, stressing mitochondrial Ca2+ with potentially damaging consequences for mitochondrial fusion and fission dynamics and astroglial bioenergetics.

2.
Front Cell Dev Biol ; 12: 1422978, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974144

RESUMO

Multiple studies have demonstrated that acute ethanol consumption alters brain function and cognition. Nevertheless, the mechanisms underlying this phenomenon remain poorly understood. Astrocyte-mediated gliotransmission is crucial for hippocampal plasticity, and recently, the opening of hemichannels has been found to play a relevant role in this process. Hemichannels are plasma membrane channels composed of six connexins or seven pannexins, respectively, that oligomerize around a central pore. They serve as ionic and molecular exchange conduits between the cytoplasm and extracellular milieu, allowing the release of various paracrine substances, such as ATP, D-serine, and glutamate, and the entry of ions and other substances, such as Ca2+ and glucose. The persistent and exacerbated opening of hemichannels has been associated with the pathogenesis and progression of several brain diseases for at least three mechanisms. The uncontrolled activity of these channels could favor the collapse of ionic gradients and osmotic balance, the release of toxic levels of ATP or glutamate, cell swelling and plasma membrane breakdown and intracellular Ca2+ overload. Here, we evaluated whether acute ethanol exposure affects the activity of astrocyte hemichannels and the possible repercussions of this phenomenon on cytoplasmatic Ca2+ signaling and gliotransmitter release. Acute ethanol exposure triggered the rapid activation of connexin43 and pannexin1 hemichannels in astrocytes, as measured by time-lapse recordings of ethidium uptake. This heightened activity derived from a rapid rise in [Ca2+]i linked to extracellular Ca2+ influx and IP3-evoked Ca2+ release from intracellular Ca2+ stores. Relevantly, the acute ethanol-induced activation of hemichannels contributed to a persistent secondary increase in [Ca2+]i. The [Ca2+]i-dependent activation of hemichannels elicited by ethanol caused the increased release of ATP and glutamate in astroglial cultures and brain slices. Our findings offer fresh perspectives on the potential mechanisms behind acute alcohol-induced brain abnormalities and propose targeting connexin43 and pannexin1 hemichannels in astrocytes as a promising avenue to prevent deleterious consequences of alcohol consumption.

3.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000353

RESUMO

Connexins (Cxs) are transmembrane proteins that assemble into gap junction channels (GJCs) and hemichannels (HCs). Previous researches support the involvement of Rho GTPases and actin microfilaments in the trafficking of Cxs, formation of GJCs plaques, and regulation of channel activity. Nonetheless, it remains uncertain whether distinct types of Cxs HCs and GJCs respond differently to Rho GTPases or changes in actin polymerization/depolymerization dynamics. Our investigation revealed that inhibiting RhoA, a small GTPase that controls actin polymerization, or disrupting actin microfilaments with cytochalasin B (Cyto-B), resulted in reduced GJCs plaque size at appositional membranes and increased transport of HCs to non-appositional plasma membrane regions. Notably, these effects were consistent across different Cx types, since Cx26 and Cx43 exhibited similar responses, despite having distinct trafficking routes to the plasma membrane. Functional assessments showed that RhoA inhibition and actin depolymerization decreased the activity of Cx43 GJCs while significantly increasing HC activity. However, the functional status of GJCs and HCs composed of Cx26 remained unaffected. These results support the hypothesis that RhoA, through its control of the actin cytoskeleton, facilitates the transport of HCs to appositional cell membranes for GJCs formation while simultaneously limiting the positioning of free HCs at non-appositional cell membranes, independently of Cx type. This dynamic regulation promotes intercellular communications and reduces non-selective plasma membrane permeability through a Cx-type dependent mechanism, whereby the activity of Cx43 HCs and GJCs are differentially affected but Cx26 channels remain unchanged.


Assuntos
Citoesqueleto de Actina , Conexina 26 , Conexina 43 , Junções Comunicantes , Proteína rhoA de Ligação ao GTP , Citoesqueleto de Actina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Junções Comunicantes/metabolismo , Conexina 43/metabolismo , Conexina 26/metabolismo , Humanos , Animais , Membrana Celular/metabolismo , Actinas/metabolismo
4.
Biol Res ; 57(1): 15, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576018

RESUMO

BACKGROUND: Alcohol, a widely abused drug, significantly diminishes life quality, causing chronic diseases and psychiatric issues, with severe health, societal, and economic repercussions. Previously, we demonstrated that non-voluntary alcohol consumption increases the opening of Cx43 hemichannels and Panx1 channels in astrocytes from adolescent rats. However, whether ethanol directly affects astroglial hemichannels and, if so, how this impacts the function and survival of astrocytes remains to be elucidated. RESULTS: Clinically relevant concentrations of ethanol boost the opening of Cx43 hemichannels and Panx1 channels in mouse cortical astrocytes, resulting in the release of ATP and glutamate. The activation of these large-pore channels is dependent on Toll-like receptor 4, P2X7 receptors, IL-1ß and TNF-α signaling, p38 mitogen-activated protein kinase, and inducible nitric oxide (NO) synthase. Notably, the ethanol-induced opening of Cx43 hemichannels and Panx1 channels leads to alterations in cytokine secretion, NO production, gliotransmitter release, and astrocyte reactivity, ultimately impacting survival. CONCLUSION: Our study reveals a new mechanism by which ethanol impairs astrocyte function, involving the sequential stimulation of inflammatory pathways that further increase the opening of Cx43 hemichannels and Panx1 channels. We hypothesize that targeting astroglial hemichannels could be a promising pharmacological approach to preserve astrocyte function and synaptic plasticity during the progression of various alcohol use disorders.


Assuntos
Alcoolismo , Conexina 43 , Camundongos , Ratos , Animais , Conexina 43/metabolismo , Astrócitos/metabolismo , Etanol/toxicidade , Etanol/metabolismo , Alcoolismo/metabolismo , Células Cultivadas , Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo
5.
Biol Res ; 57(1): 19, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689353

RESUMO

BACKGROUND: Astrocytes Ca2+ signaling play a central role in the modulation of neuronal function. Activation of metabotropic glutamate receptors (mGluR) by glutamate released during an increase in synaptic activity triggers coordinated Ca2+ signals in astrocytes. Importantly, astrocytes express the Ca2+-dependent nitric oxide (NO)-synthetizing enzymes eNOS and nNOS, which might contribute to the Ca2+ signals by triggering Ca2+ influx or ATP release through the activation of connexin 43 (Cx43) hemichannels, pannexin-1 (Panx-1) channels or Ca2+ homeostasis modulator 1 (CALHM1) channels. Hence, we aim to evaluate the participation of NO in the astrocytic Ca2+ signaling initiated by stimulation of mGluR in primary cultures of astrocytes from rat brain cortex. RESULTS: Astrocytes were stimulated with glutamate or t-ACPD and NO-dependent changes in [Ca2+]i and ATP release were evaluated. In addition, the activity of Cx43 hemichannels, Panx-1 channels and CALHM1 channels was also analyzed. The expression of Cx43, Panx-1 and CALHM1 in astrocytes was confirmed by immunofluorescence analysis and both glutamate and t-ACPD induced NO-mediated activation of CALHM1 channels via direct S-nitrosylation, which was further confirmed by assessing CALHM1-mediated current using the two-electrode voltage clamp technique in Xenopus oocytes. Pharmacological blockade or siRNA-mediated inhibition of CALHM1 expression revealed that the opening of these channels provides a pathway for ATP release and the subsequent purinergic receptor-dependent activation of Cx43 hemichannels and Panx-1 channels, which further contributes to the astrocytic Ca2+ signaling. CONCLUSIONS: Our findings demonstrate that activation of CALHM1 channels through NO-mediated S-nitrosylation in astrocytes in vitro is critical for the generation of glutamate-initiated astrocytic Ca2+ signaling.


Assuntos
Astrócitos , Sinalização do Cálcio , Óxido Nítrico , Animais , Ratos , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Conexina 43/metabolismo , Ácido Glutâmico/metabolismo , Óxido Nítrico/metabolismo , Ratos Wistar
6.
Cell Signal ; 117: 111113, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38395185

RESUMO

The emerging role of glial cells in modulating neuronal excitability and synaptic strength is a growing field in neuroscience. In recent years, a pivotal role of gliotransmission in homeostatic presynaptic plasticity has been highlighted and glial-derived ATP arises as a key contributor. However, very little is known about the glial non-vesicular ATP-release pathway and how ATP participates in the modulation of synaptic strength. Here, we investigated the functional changes occurring in neurons upon chronic inactivity and the role of the purinergic signaling, connexin43 and pannexin1 hemichannels in this process. By using hippocampal dissociated cultures, we showed that blocking connexin43 and pannexin1 hemichannels decreases the amount of extracellular ATP. Moreover, Ca2+ imaging assays using Fluo-4/AM revealed that blocking connexin43, neuronal P2X7Rs and pannexin1 hemichannels decreases the amount of basal Ca2+ in neurons. A significant impairment in synaptic vesicle pool size was also evidenced under these conditions. Interestingly, rescue experiments where Panx1HCs are blocked showed that the compensatory adjustment of cytosolic Ca2+ was recovered after P2X7Rs activation, suggesting that Panx1 acts downstream P2X7Rs. These changes were accompanied by a modulation of neuronal permeability, as revealed by ethidium bromide uptake experiments. In particular, the permeability of neuronal P2X7Rs and pannexin1 hemichannels is increased upon 24 h of inactivity. Taken together, we have uncovered a role for connexin43-dependent ATP release and neuronal P2X7Rs and pannexin1 hemichannels in the adjustment of presynaptic strength by modulating neuronal permeability, the entrance of Ca2+ into neurons and the size of the recycling pool of synaptic vesicles.


Assuntos
Conexina 43 , Conexinas , Receptores Purinérgicos P2X7 , Trifosfato de Adenosina/metabolismo , Conexina 43/metabolismo , Conexinas/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Animais , Camundongos , Ratos , Receptores Purinérgicos P2X7/metabolismo
7.
Biol. Res ; 572024.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1564031

RESUMO

Background Alcohol, a widely abused drug, significantly diminishes life quality, causing chronic diseases and psychiatric issues, with severe health, societal, and economic repercussions. Previously, we demonstrated that non-voluntary alcohol consumption increases the opening of Cx43 hemichannels and Panx1 channels in astrocytes from adolescent rats. However, whether ethanol directly affects astroglial hemichannels and, if so, how this impacts the function and survival of astrocytes remains to be elucidated. Results Clinically relevant concentrations of ethanol boost the opening of Cx43 hemichannels and Panx1 channels in mouse cortical astrocytes, resulting in the release of ATP and glutamate. The activation of these large-pore channels is dependent on Toll-like receptor 4, P2X7 receptors, IL-1β and TNF-α signaling, p38 mitogen-activated protein kinase, and inducible nitric oxide (NO) synthase. Notably, the ethanol-induced opening of Cx43 hemichannels and Panx1 channels leads to alterations in cytokine secretion, NO production, gliotransmitter release, and astrocyte reactivity, ultimately impacting survival. Conclusion Our study reveals a new mechanism by which ethanol impairs astrocyte function, involving the sequential stimulation of inflammatory pathways that further increase the opening of Cx43 hemichannels and Panx1 channels. We hypothesize that targeting astroglial hemichannels could be a promising pharmacological approach to preserve astrocyte function and synaptic plasticity during the progression of various alcohol use disorders.

8.
Biol. Res ; 572024.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1564034

RESUMO

Background Astrocytes Ca2+ signaling play a central role in the modulation of neuronal function. Activation of metabotropic glutamate receptors (mGluR) by glutamate released during an increase in synaptic activity triggers coordinated Ca2+ signals in astrocytes. Importantly, astrocytes express the Ca2+-dependent nitric oxide (NO)-synthe-tizing enzymes eNOS and nNOS, which might contribute to the Ca2+ signals by triggering Ca2+ influx or ATP release through the activation of connexin 43 (Cx43) hemichannels, pannexin-1 (Panx-1) channels or Ca2+ homeostasis modulator 1 (CALHM1) channels. Hence, we aim to evaluate the participation of NO in the astrocytic Ca2+ signaling initiated by stimulation of mGluR in primary cultures of astrocytes from rat brain cortex. Results Astrocytes were stimulated with glutamate or t-ACPD and NO-dependent changes in [Ca2+]i and ATP release were evaluated. In addition, the activity of Cx43 hemichannels, Panx-1 channels and CALHM1 channels was also analyzed. The expression of Cx43, Panx-1 and CALHM1 in astrocytes was confirmed by immunofluorescence analysis and both glutamate and t-ACPD induced NO-mediated activation of CALHM1 channels via direct S-nitrosylation, which was further confirmed by assessing CALHM1-mediated current using the two-electrode voltage clamp technique in Xenopus oocytes. Pharmacological blockade or siRNA-mediated inhibition of CALHM1 expression revealed that the opening of these channels provides a pathway for ATP release and the subsequent purinergic receptordependent activation of Cx43 hemichannels and Panx-1 channels, which further contributes to the astrocytic Ca2+ signaling. Conclusions Our findings demonstrate that activation of CALHM1 channels through NO-mediated S-nitrosylation in astrocytes in vitro is critical for the generation of glutamate-initiated astrocytic Ca2+ signaling.

9.
Biol Res ; 56(1): 56, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37876016

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the ongoing coronavirus disease 2019 (COVID-19). An aspect of high uncertainty is whether the SARS-CoV-2 per se or the systemic inflammation induced by viral infection directly affects cellular function and survival in different tissues. It has been postulated that tissue dysfunction and damage observed in COVID-19 patients may rely on the direct effects of SARS-CoV-2 viral proteins. Previous evidence indicates that the human immunodeficiency virus and its envelope protein gp120 increase the activity of connexin 43 (Cx43) hemichannels with negative repercussions for cellular function and survival. Here, we evaluated whether the spike protein S1 of SARS-CoV-2 could impact the activity of Cx43 hemichannels. RESULTS: We found that spike S1 time and dose-dependently increased the activity of Cx43 hemichannels in HeLa-Cx43 cells, as measured by dye uptake experiments. These responses were potentiated when the angiotensin-converting enzyme 2 (ACE2) was expressed in HeLa-Cx43 cells. Patch clamp experiments revealed that spike S1 increased unitary current events with conductances compatible with Cx43 hemichannels. In addition, Cx43 hemichannel opening evoked by spike S1 triggered the release of ATP and increased the [Ca2+]i dynamics elicited by ATP. CONCLUSIONS: We hypothesize that Cx43 hemichannels could represent potential pharmacological targets for developing therapies to counteract SARS-CoV-2 infection and their long-term consequences.


Assuntos
COVID-19 , Conexina 43 , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Trifosfato de Adenosina
10.
Biol Direct ; 18(1): 52, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37635249

RESUMO

Endothelial cell migration is a key process in angiogenesis. Progress of endothelial cell migration is orchestrated by coordinated generation of Ca2+ signals through a mechanism organized in caveolar microdomains. Connexins (Cx) play a central role in coordination of endothelial cell function, directly by cell-to-cell communication via gap junction and, indirectly, by the release of autocrine/paracrine signals through Cx-formed hemichannels. However, Cx hemichannels are also permeable to Ca2+ and Cx43 can be associated with caveolin-1, a structural protein of caveolae. We proposed that endothelial cell migration relies on Cx43 hemichannel opening. Here we show a novel mechanism of Ca2+ signaling in endothelial cell migration. The Ca2+ signaling that mediates endothelial cell migration and the subsequent tubular structure formation depended on Cx43 hemichannel opening and is associated with the translocation of Cx43 with caveolae to the rear part of the cells. These findings indicate that Cx43 hemichannels play a central role in endothelial cell migration and provide new therapeutic targets for the control of deregulated angiogenesis in pathological conditions such as cancer.


Assuntos
Conexina 43 , Transdução de Sinais , Movimento Celular , Células Endoteliais
11.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768481

RESUMO

Neurulation is a crucial process in the formation of the central nervous system (CNS), which begins with the folding and fusion of the neural plate, leading to the generation of the neural tube and subsequent development of the brain and spinal cord. Environmental and genetic factors that interfere with the neurulation process promote neural tube defects (NTDs). Connexins (Cxs) are transmembrane proteins that form gap junctions (GJs) and hemichannels (HCs) in vertebrates, allowing cell-cell (GJ) or paracrine (HCs) communication through the release of ATP, glutamate, and NAD+; regulating processes such as cell migration and synaptic transmission. Changes in the state of phosphorylation and/or the intracellular redox potential activate the opening of HCs in different cell types. Cxs such as Cx43 and Cx32 have been associated with proliferation and migration at different stages of CNS development. Here, using molecular and cellular biology techniques (permeability), we demonstrate the expression and functionality of HCs-Cxs, including Cx46 and Cx32, which are associated with the release of ATP during the neurulation process in Xenopus laevis. Furthermore, applications of FGF2 and/or changes in intracellular redox potentials (DTT), well known HCs-Cxs modulators, transiently regulated the ATP release in our model. Importantly, the blockade of HCs-Cxs by carbenoxolone (CBX) and enoxolone (ENX) reduced ATP release with a concomitant formation of NTDs. We propose two possible and highly conserved binding sites (N and E) in Cx46 that may mediate the pharmacological effect of CBX and ENX on the formation of NTDs. In summary, our results highlight the importance of ATP release mediated by HCs-Cxs during neurulation.


Assuntos
Conexinas , Defeitos do Tubo Neural , Animais , Conexinas/metabolismo , Neurulação , Junções Comunicantes/metabolismo , Tubo Neural/metabolismo , Defeitos do Tubo Neural/metabolismo , Trifosfato de Adenosina/metabolismo
12.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36362410

RESUMO

Gamma-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the brain. It is produced by interneurons and recycled by astrocytes. In neurons, GABA activates the influx of Cl- via the GABAA receptor or efflux or K+ via the GABAB receptor, inducing hyperpolarization and synaptic inhibition. In astrocytes, the activation of both GABAA and GABAB receptors induces an increase in intracellular Ca2+ and the release of glutamate and ATP. Connexin 43 (Cx43) hemichannels are among the main Ca2+-dependent cellular mechanisms for the astroglial release of glutamate and ATP. However, no study has evaluated the effect of GABA on astroglial Cx43 hemichannel activity and Cx43 hemichannel-mediated gliotransmission. Here we assessed the effects of GABA on Cx43 hemichannel activity in DI NCT1 rat astrocytes and hippocampal brain slices. We found that GABA induces a Ca2+-dependent increase in Cx43 hemichannel activity in astrocytes mediated by the GABAA receptor, as it was blunted by the GABAA receptor antagonist bicuculline but unaffected by GABAB receptor antagonist CGP55845. Moreover, GABA induced the Cx43 hemichannel-dependent release of glutamate and ATP, which was also prevented by bicuculline, but unaffected by CGP. Gliotransmission in response to GABA was also unaffected by pannexin 1 channel blockade. These results are discussed in terms of the possible role of astroglial Cx43 hemichannel-mediated glutamate and ATP release in regulating the excitatory/inhibitory balance in the brain and their possible contribution to psychiatric disorders.


Assuntos
Astrócitos , Conexina 43 , Ratos , Animais , Conexina 43/metabolismo , Astrócitos/metabolismo , Receptores de GABA-A , Bicuculina/farmacologia , Animais Recém-Nascidos , Células Cultivadas , Ácido Glutâmico/farmacologia , Ácido gama-Aminobutírico/farmacologia , Trifosfato de Adenosina/farmacologia
13.
Front Neurosci ; 16: 867034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573297

RESUMO

Cisplatin is a known ototoxic chemotherapy drug, causing irreversible hearing loss. Evidence has shown that cisplatin causes inner ear damage as a result of adduct formation, a proinflammatory environment and the generation of reactive oxygen species within the inner ear. The main cochlear targets for cisplatin are commonly known to be the outer hair cells, the stria vascularis and the spiral ganglion neurons. Further evidence has shown that certain transporters can mediate cisplatin influx into the inner ear cells including organic cation transporter 2 (OCT2) and the copper transporter Ctr1. However, the expression profiles for these transporters within inner ear cells are not consistent in the literature, and expression of OCT2 and Ctr1 has also been observed in supporting cells. Organ of Corti supporting cells are essential for hair cell activity and survival. Special interest has been devoted to gap junction expression by these cells as certain mutations have been linked to hearing loss. Interestingly, cisplatin appears to affect connexin expression in the inner ear. While investigations regarding cisplatin-induced hearing loss have been focused mainly on the known targets previously mentioned, the role of supporting cells for cisplatin-induced ototoxicity has been overlooked. In this mini review, we discuss the implications of supporting cells expressing OCT2 and Ctr1 as well as the potential role of gap junctions in cisplatin-induced cytotoxicity.

14.
Biomedicines ; 10(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35203715

RESUMO

Muscular dystrophies (MDs) are a heterogeneous group of congenital neuromuscular disorders whose clinical signs include myalgia, skeletal muscle weakness, hypotonia, and atrophy that leads to progressive muscle disability and loss of ambulation. MDs can also affect cardiac and respiratory muscles, impairing life-expectancy. MDs in clude Duchenne muscular dystrophy, Emery-Dreifuss muscular dystrophy, facioscapulohumeral muscular dystrophy and limb-girdle muscular dystrophy. These and other MDs are caused by mutations in genes that encode proteins responsible for the structure and function of skeletal muscles, such as components of the dystrophin-glycoprotein-complex that connect the sarcomeric-actin with the extracellular matrix, allowing contractile force transmission and providing stability during muscle contraction. Consequently, in dystrophic conditions in which such proteins are affected, muscle integrity is disrupted, leading to local inflammatory responses, oxidative stress, Ca2+-dyshomeostasis and muscle degeneration. In this scenario, dysregulation of connexin hemichannels seem to be an early disruptor of the homeostasis that further plays a relevant role in these processes. The interaction between all these elements constitutes a positive feedback loop that contributes to the worsening of the diseases. Thus, we discuss here the interplay between inflammation, oxidative stress and connexin hemichannels in the progression of MDs and their potential as therapeutic targets.

15.
FASEB J ; 36(2): e22134, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35061296

RESUMO

Astrocytes release gliotransmitters via connexin 43 (Cx43) hemichannels into neighboring synapses, which can modulate synaptic activity and are necessary for fear memory consolidation. However, the gliotransmitters released, and their mechanisms of action remain elusive. Here, we report that fear conditioning training elevated Cx43 hemichannel activity in astrocytes from the basolateral amygdala (BLA). The selective blockade of Cx43 hemichannels by microinfusion of TAT-Cx43L2 peptide into the BLA induced memory deficits 1 and 24 h after training, without affecting learning. The memory impairments were prevented by the co-injection of glutamate and D-serine, but not by the injection of either alone, suggesting a role for NMDA receptors (NMDAR). The incubation with TAT-Cx43L2 decreased NMDAR-mediated currents in BLA slices, effect that was also prevented by the addition of glutamate and D-serine. NMDARs in primary neuronal cultures were unaffected by TAT-Cx43L2, ruling out direct effects of the peptide on NMDARs. Finally, we show that D-serine permeates through purified Cx43 hemichannels reconstituted in liposomes. We propose that the release of glutamate and D-serine from astrocytes through Cx43 hemichannels is necessary for the activation of post-synaptic NMDARs during training, to allow for the formation of short-term and subsequent long-term memory, but not for learning per se.


Assuntos
Astrócitos/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Conexina 43/metabolismo , Medo/fisiologia , Memória de Curto Prazo/fisiologia , Neurotransmissores/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Ácido Glutâmico/metabolismo , Masculino , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Serina/metabolismo
16.
Int J Mol Sci ; 22(17)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34502412

RESUMO

Maternal inflammation during pregnancy causes later-in-life alterations of the offspring's brain structure and function. These abnormalities increase the risk of developing several psychiatric and neurological disorders, including schizophrenia, intellectual disability, bipolar disorder, autism spectrum disorder, microcephaly, and cerebral palsy. Here, we discuss how astrocytes might contribute to postnatal brain dysfunction following maternal inflammation, focusing on the signaling mediated by two families of plasma membrane channels: hemi-channels and pannexons. [Ca2+]i imbalance linked to the opening of astrocytic hemichannels and pannexons could disturb essential functions that sustain astrocytic survival and astrocyte-to-neuron support, including energy and redox homeostasis, uptake of K+ and glutamate, and the delivery of neurotrophic factors and energy-rich metabolites. Both phenomena could make neurons more susceptible to the harmful effect of prenatal inflammation and the experience of a second immune challenge during adulthood. On the other hand, maternal inflammation could cause excitotoxicity by producing the release of high amounts of gliotransmitters via astrocytic hemichannels/pannexons, eliciting further neuronal damage. Understanding how hemichannels and pannexons participate in maternal inflammation-induced brain abnormalities could be critical for developing pharmacological therapies against neurological disorders observed in the offspring.


Assuntos
Astrócitos/metabolismo , Canais Iônicos/metabolismo , Transtornos Mentais , Complicações na Gravidez , Efeitos Tardios da Exposição Pré-Natal , Astrócitos/patologia , Transporte Biológico Ativo , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Transtornos Mentais/etiologia , Transtornos Mentais/metabolismo , Transtornos Mentais/patologia , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Gravidez , Complicações na Gravidez/metabolismo , Complicações na Gravidez/patologia , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia
17.
J Neurosci Res ; 99(10): 2493-2510, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34184764

RESUMO

Resilience to stress is the ability to quickly adapt to adversity. There is evidence that exposure to prolonged stress triggers neuroinflammation what produces individual differences in stress vulnerability. However, the relationship between stress resilience, neuroinflammation, and depressive-like behaviors remains unknown. The aim of this study was to analyze the long-term effects of social defeat stress (SDS) on neuroinflammation in the hippocampus and depressive-like behaviors. Male rats were subjected to the SDS paradigm. Social interaction was analyzed 1 and 2 weeks after ending the SDS to determine which animals were susceptible or resilient to stress. Neuroinflammation markers glial fibrillary acidic protein, ionized calcium-binding adaptor molecule 1, and elevated membrane permeability in astrocytes and microglia, as well as depressive-like behaviors in the sucrose preference test and forced swim test were evaluated in all rats. One week after SDS, resilient rats increased their sucrose preference, and time spent in the floating behavior decreased in the forced swim test compared to susceptible rats. Surprisingly, resilient rats became susceptible to stress, and presented neuroinflammation 2 weeks after SDS. These findings suggest that SDS-induced hippocampal neuroinflammation persists in post-stress stages, regardless of whether rats were initially resilient or not. Our study opens a new approach to understanding the neurobiology of stress resilience.


Assuntos
Hipocampo/metabolismo , Locomoção/fisiologia , Doenças Neuroinflamatórias/metabolismo , Resiliência Psicológica/fisiologia , Derrota Social , Estresse Psicológico/metabolismo , Animais , Hipocampo/patologia , Masculino , Aprendizagem em Labirinto/fisiologia , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/psicologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Estresse Psicológico/patologia , Estresse Psicológico/psicologia , Fatores de Tempo
18.
Int J Mol Sci ; 22(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801118

RESUMO

Diabetic retinopathy (DR) is one of the main causes of vision loss in the working age population. It is characterized by a progressive deterioration of the retinal microvasculature, caused by long-term metabolic alterations inherent to diabetes, leading to a progressive loss of retinal integrity and function. The mammalian retina presents an orderly layered structure that executes initial but complex visual processing and analysis. Gap junction channels (GJC) forming electrical synapses are present in each retinal layer and contribute to the communication between different cell types. In addition, connexin hemichannels (HCs) have emerged as relevant players that influence diverse physiological and pathological processes in the retina. This article highlights the impact of diabetic conditions on GJC and HCs physiology and their involvement in DR pathogenesis. Microvascular damage and concomitant loss of endothelial cells and pericytes are related to alterations in gap junction intercellular communication (GJIC) and decreased connexin 43 (Cx43) expression. On the other hand, it has been shown that the expression and activity of HCs are upregulated in DR, becoming a key element in the establishment of proinflammatory conditions that emerge during hyperglycemia. Hence, novel connexin HCs blockers or drugs to enhance GJIC are promising tools for the development of pharmacological interventions for diabetic retinopathy, and initial in vitro and in vivo studies have shown favorable results in this regard.


Assuntos
Conexinas/metabolismo , Retinopatia Diabética/etiologia , Retinopatia Diabética/metabolismo , Suscetibilidade a Doenças , Junções Comunicantes/metabolismo , Animais , Conexinas/genética , Retinopatia Diabética/patologia , Junções Comunicantes/genética , Expressão Gênica , Humanos , Neuroglia/metabolismo , Retina/metabolismo , Retina/patologia
19.
Int J Mol Sci ; 22(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672031

RESUMO

Considered relevant during allergy responses, numerous observations have also identified mast cells (MCs) as critical effectors during the progression and modulation of several neuroinflammatory conditions, including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). MC granules contain a plethora of constituents, including growth factors, cytokines, chemokines, and mitogen factors. The release of these bioactive substances from MCs occurs through distinct pathways that are initiated by the activation of specific plasma membrane receptors/channels. Here, we focus on hemichannels (HCs) formed by connexins (Cxs) and pannexins (Panxs) proteins, and we described their contribution to MC degranulation in AD, ALS, and harmful stress conditions. Cx/Panx HCs are also expressed by astrocytes and are likely involved in the release of critical toxic amounts of soluble factors-such as glutamate, adenosine triphosphate (ATP), complement component 3 derivate C3a, tumor necrosis factor (TNFα), apoliprotein E (ApoE), and certain miRNAs-known to play a role in the pathogenesis of AD, ALS, and other neurodegenerative disorders. We propose that blocking HCs on MCs and glial cells offers a promising novel strategy for ameliorating the progression of neurodegenerative diseases by reducing the release of cytokines and other pro-inflammatory compounds.


Assuntos
Doença de Alzheimer/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/metabolismo , Conexinas/metabolismo , Canais Iônicos/metabolismo , Mastócitos/metabolismo , Estresse Fisiológico , Animais , Degranulação Celular , Citocinas/metabolismo , Humanos , Mastócitos/imunologia
20.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630161

RESUMO

Preeclampsia is a pregnancy complication that appears after 20 weeks of gestation and is characterized by hypertension and proteinuria, affecting both mother and offspring. The cellular and molecular mechanisms that cause the development of preeclampsia are poorly understood. An important feature of preeclampsia is an increase in oxygen and nitrogen derived free radicals (reactive oxygen species/reactive nitrogen species (ROS/RNS), which seem to be central players setting the development and progression of preeclampsia. Cell-to-cell communication may be disrupted as well. Connexins (Cxs), a family of transmembrane proteins that form hemichannels and gap junction channels (GJCs), are essential in paracrine and autocrine cell communication, allowing the movement of signaling molecules between cells as well as between the cytoplasm and the extracellular media. GJCs and hemichannels are fundamental for communication between endothelial and smooth muscle cells and, therefore, in the control of vascular contraction and relaxation. In systemic vasculature, the activity of GJCs and hemichannels is modulated by ROS and RNS. Cxs participate in the development of the placenta and are expressed in placental vasculature. However, it is unknown whether Cxs are modulated by ROS/RNS in the placenta, or whether this potential modulation contributes to the pathogenesis of preeclampsia. Our review addresses the possible role of Cxs in preeclampsia, and the plausible modulation of Cxs-formed channels by ROS and RNS. We suggest these factors may contribute to the development of preeclampsia.


Assuntos
Conexinas/metabolismo , Pré-Eclâmpsia/etiologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Vasos Sanguíneos/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA