Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Exp Bot ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39113673

RESUMO

Successful plant reproduction depends on the adequate development of flower organs controlled by cell proliferation and other processes. The SCI1 gene regulates cell proliferation and affects the final size of the female reproductive organ. To unravel the molecular mechanism exerted by SCI1 in cell proliferation control, we searched for its interaction partners through semi-in vivo pulldown experiments, uncovering a cyclin-dependent kinase, NtCDKG;2. Bimolecular fluorescence complementation (BiFC) and co-localization experiments showed that SCI1 interacts with NtCDKG;2 and its cognate NtCyclin L in nucleoli and splicing speckles. The screening of a yeast two-hybrid (Y2H) cDNA library using SCI1 as bait revealed a novel DEAD-box RNA helicase (NtRH35). The interaction between the NtCDKG;2-NtCyclin L complex, and NtRH35 was also shown. Subcellular localization experiments showed that SCI1, NtRH35, and the NtCDKG;2-NtCyclin L complex associate with each other within splicing speckles. The Y2H screening of NtCDKG;2 and NtRH35 identified the conserved spliceosome components U2a', NKAP, and CACTIN. This work presents SCI1 and its interactors NtCDKG;2-NtCyclin L complex, and NtRH35 as new spliceosome-associated proteins. Our findings reveal a network of interactions and suggest that SCI1 may regulate cell proliferation through the splicing process. This study provides new valuable insights into the intricate molecular pathways governing plant development.

2.
Mol Biol Rep ; 51(1): 754, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874681

RESUMO

BACKGROUND: Telomeropathies are a group of inherited disorders caused by germline pathogenic variants in genes involved in telomere maintenance, resulting in excessive telomere attrition that affects several tissues, including hematopoiesis. RecQ and RTEL1 helicases contribute to telomere maintenance by unwinding telomeric structures such as G-quadruplexes (G4), preventing replication defects. Germline RTEL1 variants also are etiologic in telomeropathies. METHODS AND RESULTS: Here we investigated the expression of RecQ (RECQL1, BLM, WRN, RECQL4, and RECQL5) and RTEL1 helicase genes in peripheral blood mononuclear cells (PBMCs) from human telomeropathy patients. The mRNA expression levels of all RecQ helicases, but not RTEL1, were significantly downregulated in patients' primary cells. Reduced RecQ expression was not attributable to cell proliferative exhaustion, as RecQ helicases were not attenuated in T cells exhausted in vitro. An additional fifteen genes involved in DNA damage repair and RecQ functional partners also were downregulated in the telomeropathy cells. CONCLUSION: These findings indicate that the expression of RecQ helicases and functional partners involved in DNA repair is downregulated in PBMCs of telomeropathy patients.


Assuntos
Leucócitos Mononucleares , RecQ Helicases , Adulto , Feminino , Humanos , Masculino , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA/genética , Leucócitos Mononucleares/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo , Telômero/metabolismo , Telômero/genética , Homeostase do Telômero/genética
3.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746241

RESUMO

The Zika virus (ZIKV), discovered in Africa in 1947, swiftly spread across continents, causing significant concern due to its recent association with microcephaly in newborns and Guillain-Barré syndrome in adults. Despite a decrease in prevalence, the potential for a resurgence remains, necessitating urgent therapeutic interventions. Like other flaviviruses, ZIKV presents promising drug targets within its replication machinery, notably the NS3 helicase (NS3Hel) protein, which plays critical roles in viral replication. However, a lack of structural information impedes the development of specific inhibitors targeting NS3Hel. Here we applied high-throughput crystallographic fragment screening on ZIKV NS3Hel, which yielded structures that reveal 3D binding poses of 46 fragments at multiple sites of the protein, including 11 unique fragments in the RNA-cleft site. These fragment structures provide templates for direct design of hit compounds and should thus assist the development of novel direct-acting antivirals against ZIKV and related flaviviruses, thus opening a promising avenue for combating future outbreaks.

4.
Plants (Basel) ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38592921

RESUMO

Helicases, motor proteins present in both prokaryotes and eukaryotes, play a direct role in various steps of RNA metabolism. Specifically, SF2 RNA helicases, a subset of the DEAD-box family, are essential players in plant developmental processes and responses to biotic and abiotic stresses. Despite this, information on this family in the physic nut (Jatropha curcas L.) remains limited, spanning from structural patterns to stress responses. We identified 79 genes encoding DEAD-box RNA helicases (JcDHX) in the J. curcas genome. These genes were further categorized into three subfamilies: DEAD (42 genes), DEAH (30 genes), and DExH/D (seven genes). Characterization of the encoded proteins revealed a remarkable diversity, with observed patterns in domains, motifs, and exon-intron structures suggesting that the DEAH and DExH/D subfamilies in J. curcas likely contribute to the overall versatility of the family. Three-dimensional modeling of the candidates showed characteristic hallmarks, highlighting the expected functional performance of these enzymes. The promoter regions of the JcDHX genes revealed potential cis-elements such as Dof-type, BBR-BPC, and AP2-ERF, indicating their potential involvement in the response to abiotic stresses. Analysis of RNA-Seq data from the roots of physic nut accessions exposed to 150 mM of NaCl for 3 h showed most of the JcDHX candidates repressed. The protein-protein interaction network indicated that JcDHX proteins occupy central positions, connecting events associated with RNA metabolism. Quantitative PCR analysis validated the expression of nine DEAD-box RNA helicase transcripts, showing significant associations with key components of the stress response, including RNA turnover, ribosome biogenesis, DNA repair, clathrin-mediated vesicular transport, phosphatidyl 3,5-inositol synthesis, and mitochondrial translation. Furthermore, the induced expression of one transcript (JcDHX44) was confirmed, suggesting that it is a potential candidate for future functional analyses to better understand its role in salinity stress tolerance. This study represents the first global report on the DEAD-box family of RNA helicases in physic nuts and displays structural characteristics compatible with their functions, likely serving as a critical component of the plant's response pathways.

5.
Int J Biol Macromol ; 259(Pt 2): 129330, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218270

RESUMO

DEAD-box helicases are global regulators of liquid-liquid phase separation (LLPS), a process that assembles membraneless organelles inside cells. An outstanding member of the DEAD-box family is DDX3X, a multi-functional protein that plays critical roles in RNA metabolism, including RNA transcription, splicing, nucleocytoplasmic export, and translation. The diverse functions of DDX3X result from its ability to bind and remodel RNA in an ATP-dependent manner. This capacity enables the protein to act as an RNA chaperone and an RNA helicase, regulating ribonucleoprotein complex assembly. DDX3X and its orthologs from mouse, yeast (Ded1), and C. elegans (LAF-1) can undergo LLPS, driving the formation of neuronal granules, stress granules, processing bodies or P-granules. DDX3X has been related to several human conditions, including neurodevelopmental disorders, such as intellectual disability and autism spectrum disorder. Although the research into the pathogenesis of aberrant biomolecular condensation in neurodegenerative diseases is increasing rapidly, the role of LLPS in neurodevelopmental disorders is underexplored. This review summarizes current findings relevant for DDX3X phase separation in neurodevelopment and examines how disturbances in the LLPS process can be related to neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista , RNA Helicases DEAD-box , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Transtorno do Espectro Autista/genética , Caenorhabditis elegans/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Transtornos do Neurodesenvolvimento/genética , RNA/metabolismo , Saccharomyces cerevisiae/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-38092990

RESUMO

Major depressive disorder (MDD) and type 2 diabetes (T2D) are complex disorders whose comorbidity can be due to hypercortisolism and may be explained by dysfunction of the corticotropin-releasing hormone receptor 1 (CRHR1) and cortisol feedback within the hypothalamic-pituitary-adrenal axis (HPA axis). To investigate the role of the CRHR1 gene in familial T2D, MDD, and MDD-T2D comorbidity, we tested 152 CRHR1 single-nucleotide-polymorphisms (SNPs), via 2-point parametric linkage and linkage disequilibrium (LD; i.e., association) analyses using 4 models, in 212 peninsular families with T2D and MDD. We detected linkage/LD/association to/with MDD and T2D with 122 (116 novel) SNPs. MDD and T2D had 4 and 3 disorder-specific novel risk LD blocks, respectively, whose risk variants reciprocally confirm one another. Comorbidity was conferred by 3 novel independent SNPs. In silico analyses reported novel functional changes, including the binding site of glucocorticoid receptor-alpha [GR-α] on CRHR1 for transcription regulation. This is the first report of CRHR1 pleiotropic linkage/LD/association with peninsular familial MDD and T2D. CRHR1 contribution to MDD is stronger than to T2D and may antecede T2D onset. Our findings suggest a new molecular-based clinical entity of MDD-T2D and should be replicated in other ethnic groups.

7.
Microbiol Spectr ; 11(6): e0193423, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37850787

RESUMO

IMPORTANCE: One of the most important control points in gene regulation is RNA stability, which determines the half-life of a transcript from its transcription until its degradation. Bacteria have evolved a sophisticated multi-enzymatic complex, the RNA degradosome, which is dedicated mostly to RNA turnover. The combined activity of RNase E and the other RNA degradosome enzymes provides an efficient pipeline for the complete degradation of RNAs. The DEAD-box RNA helicases are very often found in RNA degradosomes from phylogenetically distant bacteria, confirming their importance in unwinding structured RNA for subsequent degradation. This work showed that the absence of the RNA helicase RhlB in the free-living Alphaproteobacterium Caulobacter crescentus causes important changes in gene expression and cell physiology. These are probably due, at least in part, to inefficient RNA processing by the RNA degradosome, particularly at low-temperature conditions.


Assuntos
Caulobacter , Caulobacter/genética , Caulobacter/metabolismo , Temperatura , RNA/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Processamento Pós-Transcricional do RNA
8.
Microbiol Spectr ; 11(6): e0296023, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37905935

RESUMO

IMPORTANCE: In the unicellular parasites Leishmania spp., the etiological agents of leishmaniasis, a complex infectious disease that affects 98 countries in 5 continents, chemical inhibition of HSP90 protein leads to differentiation from promastigote to amastigote stage. Recent studies indicate potential role for protein phosphorylation in the life cycle control of Leishmania. Also, recent studies suggest a fundamentally important role of RNA-binding proteins (RBPs) in regulating the downstream effects of the HSP90 inhibition in Leishmania. Phosphorylation-dephosphorylation dynamics of RBPs in higher eukaryotes serves as an important on/off switch to regulate RNA processing and decay in response to extracellular signals and cell cycle check points. In the current study, using a combination of highly sensitive TMT labeling-based quantitative proteomic MS and robust phosphoproteome enrichment, we show for the first time that HSP90 inhibition distinctively modulates global protein phosphorylation landscapes in the different life cycle stages of Leishmania, shedding light into a crucial role of the posttranslational modification in the differentiation of the parasite under HSP90 inhibition stress. We measured changes in phosphorylation of many RBPs and signaling proteins including protein kinases upon HSP90 inhibition in the therapeutically relevant amastigote stage. This work provides insights into the importance of HSP90-mediated protein cross-talks and regulation of phosphorylation in Leishmania, thus significantly expanding our knowledge of the posttranslational modification in Leishmania biology.


Assuntos
Leishmania mexicana , Leishmania , Leishmania mexicana/metabolismo , Proteômica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Leishmania/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteoma/metabolismo
9.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34850089

RESUMO

Helitrons are the only group of rolling-circle transposons that encode a transposase with a helicase domain (Hel), which belongs to the Pif1 family. Because Pif1 helicases are important components of eukaryotic genomes, it has been suggested that Hel domains probably originated after a host eukaryotic Pif1 gene was captured by a Helitron ancestor. However, the few analyses exploring the evolution of Helitron transposases (RepHel) have focused on its Rep domain, which is also present in other mobile genetic elements. Here, we used phylogenetic and nonmetric multidimensional scaling analyses to investigate the relationship between Hel domains and Pif1-like helicases from a variety of organisms. Our results reveal that Hel domains are only distantly related to genomic helicases from eukaryotes and prokaryotes, and thus are unlikely to have originated from a captured Pif1 gene. Based on this evidence, and on recent studies indicating that Rep domains are more closely related to rolling-circle plasmids and phages, we suggest that Helitrons are descendants of a RepHel-encoding prokaryotic plasmid element that invaded eukaryotic genomes before the radiation of its major groups. We discuss how a Pif1-like helicase domain might have favored the transposition of Helitrons in eukaryotes beyond simply unwinding DNA intermediates. Finally, we demonstrate that some examples in the literature describing genomic helicases from eukaryotes actually consist of Hel domains from Helitrons, a finding that underscores how transposons can hamper the analysis of eukaryotic genes. This investigation also revealed that two groups of land plants appear to have lost genomic Pif1 helicases independently.


Assuntos
Elementos de DNA Transponíveis , Células Procarióticas , Células Eucarióticas , Filogenia , Plasmídeos
10.
Vaccines (Basel) ; 9(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34960145

RESUMO

BACKGROUND: Early metabolic reorganization was only recently recognized as an essentially integrated part of immunology. In this context, unbalanced ROS/RNS levels connected to increased aerobic fermentation, which is linked to alpha-tubulin-based cell restructuring and control of cell cycle progression, were identified as a major complex trait for early de novo programming ('CoV-MAC-TED') during SARS-CoV-2 infection. This trait was highlighted as a critical target for developing early anti-viral/anti-SARS-CoV-2 strategies. To obtain this result, analyses had been performed on transcriptome data from diverse experimental cell systems. A call was released for wide data collection of the defined set of genes for transcriptome analyses, named 'ReprogVirus', which should be based on strictly standardized protocols and data entry from diverse virus types and variants into the 'ReprogVirus Platform'. This platform is currently under development. However, so far, an in vitro cell system from primary target cells for virus attacks that could ideally serve for standardizing the data collection of early SARS-CoV-2 infection responses has not been defined. RESULTS: Here, we demonstrate transcriptome-level profiles of the most critical 'ReprogVirus' gene sets for identifying 'CoV-MAC-TED' in cultured human nasal epithelial cells infected by two SARS-CoV-2 variants differing in disease severity. Our results (a) validate 'Cov-MAC-TED' as a crucial trait for early SARS-CoV-2 reprogramming for the tested virus variants and (b) demonstrate its relevance in cultured human nasal epithelial cells. CONCLUSION: In vitro-cultured human nasal epithelial cells proved to be appropriate for standardized transcriptome data collection in the 'ReprogVirus Platform'. Thus, this cell system is highly promising to advance integrative data analyses with the help of artificial intelligence methodologies for designing anti-SARS-CoV-2 strategies.

11.
Virus Evol ; 7(2): veab078, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34642605

RESUMO

Long-term infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a challenge to virus dispersion and the control of coronavirus disease 2019 (COVID-19) pandemic. The reason why some people have prolonged infection and how the virus persists for so long are still not fully understood. Recent studies suggested that the accumulation of intra-host single nucleotide variants (iSNVs) over the course of the infection might play an important role in persistence as well as emergence of mutations of concern. For this reason, we aimed to investigate the intra-host evolution of SARS-CoV-2 during prolonged infection. Thirty-three patients who remained reverse transcription polymerase chain reaction (RT-PCR) positive in the nasopharynx for on average 18 days from the symptoms onset were included in this study. Whole-genome sequences were obtained for each patient at two different time points. Phylogenetic, populational, and computational analyses of viral sequences were consistent with prolonged infection without evidence of coinfection in our cohort. We observed an elevated within-host genomic diversity at the second time point samples positively correlated with cycle threshold (Ct) values (lower viral load). Direct transmission was also confirmed in a small cluster of healthcare professionals that shared the same workplace by the presence of common iSNVs. A differential accumulation of missense variants between the time points was detected targeting crucial structural and non-structural proteins such as Spike and helicase. Interestingly, longitudinal acquisition of iSNVs in Spike protein coincided in many cases with SARS-CoV-2 reactive and predicted T cell epitopes. We observed a distinguishing pattern of mutations over the course of the infection mainly driven by increasing A→U and decreasing G→A signatures. G→A mutations may be associated with RNA-editing enzyme activities; therefore, the mutational profiles observed in our analysis were suggestive of innate immune mechanisms of the host cell defense. Therefore, we unveiled a dynamic and complex landscape of host and pathogen interaction during prolonged infection of SARS-CoV-2, suggesting that the host's innate immunity shapes the increase of intra-host diversity. Our findings may also shed light on possible mechanisms underlying the emergence and spread of new variants resistant to the host immune response as recently observed in COVID-19 pandemic.

12.
Mol Plant Microbe Interact ; 33(6): 808-824, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32101077

RESUMO

Trichoderma spp. are filamentous fungi that colonize plant roots conferring beneficial effects to plants, either indirectly through the induction of their defense systems or directly through the suppression of phytopathogens in the rhizosphere. Transcriptomic analyses of Trichoderma spp. emerged as a powerful method for identifying the molecular events underlying the establishment of this beneficial relationship. Here, we focus on the transcriptomic response of Trichoderma virens during its interaction with Arabidopsis seedlings. The main response of T. virens to cocultivation with Arabidopsis was the repression of gene expression. The biological processes of transport and metabolism of carbohydrates were downregulated, including a set of cell wall-degrading enzymes putatively relevant for root colonization. Repression of such genes reached their basal levels at later times in the interaction, when genes belonging to the biological process of copper ion transport were induced, a necessary process providing copper as a cofactor for cell wall-degrading enzymes with the auxiliary activities class. RNA-Seq analyses showed the induction of a member of the SNF2 family of chromatin remodelers/helicase-related proteins, which was named IPA-1 (increased protection of Arabidopsis-1). Sequence analyses of IPA-1 showed its closest relatives to be members of the Rad5/Rad16 and SNF2 subfamilies; however, it grouped into a different clade. Although deletion of IPA-1 in T. virens did not affect its growth, the antibiotic activity of Δipa-1 culture filtrates against Rhizoctonia solani diminished but it remained unaltered against Botrytis cinerea. Triggering of the plant defense genes in plants treated with Δipa-1 was higher, showing enhanced resistance against Pseudomonas syringae but not against B. cinerea as compared with the wild type.


Assuntos
Antibiose , Arabidopsis/microbiologia , Montagem e Desmontagem da Cromatina , Resistência à Doença , Rhizoctonia/patogenicidade , Trichoderma/fisiologia , Humanos , Doenças das Plantas/microbiologia , Raízes de Plantas , Transcriptoma
13.
EMBO J ; 38(16): e101284, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31294866

RESUMO

The effectiveness of checkpoint kinase 1 (Chk1) inhibitors at killing cancer cells is considered to be fully dependent on their effect on DNA replication initiation. Chk1 inhibition boosts origin firing, presumably limiting the availability of nucleotides and in turn provoking the slowdown and subsequent collapse of forks, thus decreasing cell viability. Here we show that slow fork progression in Chk1-inhibited cells is not an indirect effect of excess new origin firing. Instead, fork slowdown results from the accumulation of replication barriers, whose bypass is impeded by CDK-dependent phosphorylation of the specialized DNA polymerase eta (Polη). Also in contrast to the linear model, the accumulation of DNA damage in Chk1-deficient cells depends on origin density but is largely independent of fork speed. Notwithstanding this, origin dysregulation contributes only mildly to the poor proliferation rates of Chk1-depleted cells. Moreover, elimination of replication barriers by downregulation of helicase components, but not their bypass by Polη, improves cell survival. Our results thus shed light on the molecular basis of the sensitivity of tumors to Chk1 inhibition.


Assuntos
Quinase 1 do Ponto de Checagem/genética , Replicação do DNA , Técnicas de Silenciamento de Genes/métodos , Neoplasias/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Dano ao DNA , DNA Polimerase Dirigida por DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Neoplasias/metabolismo , Fosforilação , Origem de Replicação
14.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;51(9): e7588, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-951758

RESUMO

Previous studies suggested that chromodomain helicase DNA-binding proteins (CHDs), including CHD 1-8, were associated with several human diseases and cancers including lymphoma, liver cancer, colorectal cancer, stomach cancer, etc. To date, little research on CHD 9 in human cancers has been reported. In this study, we assessed the prognostic value of CHD 9 in patients with colorectal cancer (CRC). We screened for CHD 9 expression using immunohistochemical analysis in 87 surgical CRC specimens and found that the expression was upregulated in 81.5% of the cases, while 7.4% were decreased; in the remaining 11.1% of the cases, levels were not altered. Kaplan-Meier analysis showed that patients with high CHD 9 expression had better prognosis than those with low CHD 9 expression (54.5 vs 32.1%, P=0.034). Subsequently, Cox multi-factor survival regression analysis revealed that expression of CHD 9 protein was an independent predictor for CRC, with a hazard ratio of 0.503 (P=0.028). In addition, we found that CHD 9 expression was positively correlated with MSH2 (rs=0.232, P=0.036). We speculated that CHD9 might be a putative tumor suppressor gene, and could inhibit the development of CRC by participating in DNA repair processes. Our findings suggest that CHD 9 could be a novel prognostic biomarker and a therapeutic target for CRC. Further studies are needed to detect the effect of CHD 9 on cellular function and the expression of mismatch repair genes.


Assuntos
Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Adulto Jovem , Fatores de Transcrição/metabolismo , Neoplasias Colorretais/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Prognóstico , Fatores de Transcrição/genética , Imuno-Histoquímica , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Transativadores , DNA Helicases , Proteínas de Ligação a DNA/genética , Estimativa de Kaplan-Meier , Estadiamento de Neoplasias
15.
J Bacteriol ; 199(13)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28396352

RESUMO

In diverse bacterial lineages, multienzyme assemblies have evolved that are central elements of RNA metabolism and RNA-mediated regulation. The aquatic Gram-negative bacterium Caulobacter crescentus, which has been a model system for studying the bacterial cell cycle, has an RNA degradosome assembly that is formed by the endoribonuclease RNase E and includes the DEAD-box RNA helicase RhlB. Immunoprecipitations of extracts from cells expressing an epitope-tagged RNase E reveal that RhlE, another member of the DEAD-box helicase family, associates with the degradosome at temperatures below those optimum for growth. Phenotype analyses of rhlE, rhlB, and rhlE rhlB mutant strains show that RhlE is important for cell fitness at low temperature and its role may not be substituted by RhlB. Transcriptional and translational fusions of rhlE to the lacZ reporter gene and immunoblot analysis of an epitope-tagged RhlE indicate that its expression is induced upon temperature decrease, mainly through posttranscriptional regulation. RNase E pulldown assays show that other proteins, including the transcription termination factor Rho, a second DEAD-box RNA helicase, and ribosomal protein S1, also associate with the degradosome at low temperature. The results suggest that the RNA degradosome assembly can be remodeled with environmental change to alter its repertoire of helicases and other accessory proteins.IMPORTANCE DEAD-box RNA helicases are often present in the RNA degradosome complex, helping unwind secondary structures to facilitate degradation. Caulobacter crescentus is an interesting organism to investigate degradosome remodeling with change in temperature, because it thrives in freshwater bodies and withstands low temperature. In this study, we show that at low temperature, the cold-induced DEAD-box RNA helicase RhlE is recruited to the RNA degradosome, along with other helicases and the Rho protein. RhlE is essential for bacterial fitness at low temperature, and its function may not be complemented by RhlB, although RhlE is able to complement for rhlB loss. These results suggest that RhlE has a specific role in the degradosome at low temperature, potentially improving adaptation to this condition.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/metabolismo , RNA Helicases DEAD-box/metabolismo , Endorribonucleases/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Complexos Multienzimáticos/fisiologia , Polirribonucleotídeo Nucleotidiltransferase/fisiologia , RNA Helicases/fisiologia , RNA Bacteriano/metabolismo , Proteínas de Bactérias/genética , Caulobacter crescentus/genética , Temperatura Baixa , Regulação Enzimológica da Expressão Gênica/fisiologia
16.
Biochem Biophys Res Commun ; 492(4): 643-651, 2017 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-28341122

RESUMO

America is still suffering with the outbreak of Zika virus (ZIKV) infection. Congenital ZIKV syndrome has already caused a public health emergency of international concern. However, there are still no vaccines to prevent or drugs to treat the infection caused by ZIKV. The ZIKV NS3 helicase (NS3h) protein is a promising target for drug discovery due to its essential role in viral genome replication. NS3h unwinds the viral RNA to enable the replication of the viral genome by the NS5 protein. NS3h contains two important binding sites: the NTPase binding site and the RNA binding site. Here, we used molecular dynamics (MD) simulations to study the molecular behavior of ZIKV NS3h in the presence and absence of ssRNA and the potential implications for NS3h activity and inhibition. Although there is conformational variability and poor electron densities of the RNA binding loop in various apo flaviviruses NS3h crystallographic structures, the MD trajectories of NS3h-ssRNA demonstrated that the RNA binding loop becomes more stable when NS3h is occupied by RNA. Our results suggest that the presence of RNA generates important interactions with the RNA binding loop, and these interactions stabilize the loop sufficiently that it remains in a closed conformation. This closed conformation likely keeps the ssRNA bound to the protein for a sufficient duration to enable the unwinding/replication activities of NS3h to occur. In addition, conformational changes of this RNA binding loop can change the nature and location of the optimal ligand binding site, according to ligand binding site prediction results. These are important findings to help guide the design and discovery of new inhibitors of NS3h as promising compounds to treat the ZIKV infection.


Assuntos
Modelos Químicos , Simulação de Dinâmica Molecular , RNA Viral/química , RNA Viral/ultraestrutura , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/ultraestrutura , Zika virus/enzimologia , Sítios de Ligação , Ativação Enzimática , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , RNA Helicases/química , RNA Helicases/ultraestrutura , Serina Endopeptidases/química , Serina Endopeptidases/ultraestrutura
17.
BMC Microbiol ; 16: 55, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27005008

RESUMO

BACKGROUND: RNA helicases are enzymes that catalyze the separation of double-stranded RNA (dsRNA) using the free energy of ATP binding and hydrolysis. DEAD/DEAH families participate in many different aspects of RNA metabolism, including RNA synthesis, RNA folding, RNA-RNA interactions, RNA localization and RNA degradation. Several important bacterial DEAD/DEAH-box RNA helicases have been extensively studied. In this study, we characterize the ATP-dependent RNA helicase encoded by the hrpB (XAC0293) gene using deletion and genetic complementation assays. We provide insights into the function of the hrpB gene in Xanthomonas citri subsp. citri by investigating the roles of hrpB in biofilm formation on abiotic surfaces and host leaves, cell motility, host virulence of the citrus canker bacterium and growth in planta. RESULTS: The hrpB gene is highly conserved in the sequenced strains of Xanthomonas. Mutation of the hrpB gene (∆hrpB) resulted in a significant reduction in biofilms on abiotic surfaces and host leaves. ∆hrpB also exhibited increased cell dispersion on solid medium plates. ∆hrpB showed reduced adhesion on biotic and abiotic surfaces and delayed development in disease symptoms when sprayed on susceptible citrus leaves. Quantitative reverse transcription-PCR assays indicated that deletion of hrpB reduced the expression of four type IV pili genes. The transcriptional start site of fimA (XAC3241) was determined using rapid amplification of 5'-cDNA Ends (5'RACE). Based on the results of fimA mRNA structure predictions, the fimA 5' UTR may contain three different loops. HrpB may be involved in alterations to the structure of fimA mRNA that promote the stability of fimA RNA. CONCLUSIONS: Our data show that hrpB is involved in adherence of Xanthomonas citri subsp. citri to different surfaces. In addition, to the best of our knowledge, this is the first time that a DEAH RNA helicase has been implicated in the regulation of type IV pili in Xanthomonas.


Assuntos
Biofilmes/crescimento & desenvolvimento , RNA Helicases/genética , RNA Helicases/metabolismo , Xanthomonas/fisiologia , Xanthomonas/patogenicidade , Regiões 5' não Traduzidas , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citrus/microbiologia , Fímbrias Bacterianas/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Virulência , Xanthomonas/enzimologia
18.
Clin Exp Immunol ; 183(1): 114-28, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26340409

RESUMO

Dengue is the most prevalent arboviral disease worldwide. The outcome of the infection is determined by the interplay of viral and host factors. In the present study, we evaluated the cellular response of human monocyte-derived DCs (mdDCs) infected with recombinant dengue virus type 1 (DV1) strains carrying a single point mutation in the NS3hel protein (L435S or L480S). Both mutated viruses infect and replicate more efficiently and produce more viral progeny in infected mdDCs compared with the parental, non-mutated virus (vBACDV1). Additionally, global gene expression analysis using cDNA microarrays revealed that the mutated DVs induce the up-regulation of the interferon (IFN) signalling and pattern recognition receptor (PRR) canonical pathways in mdDCs. Pronounced production of type I IFN were detected specifically in mdDCs infected with DV1-NS3hel-mutated virus compared with mdDCs infected with the parental virus. In addition, we showed that the type I IFN produced by mdDCs is able to reduce DV1 infection rates, suggesting that cytokine function is effective but not sufficient to mediate viral clearance of DV1-NS3hel-mutated strains. Our results demonstrate that single point mutations in subdomain 2 have important implications for adenosine triphosphatase (ATPase) activity of DV1-NS3hel. Although a direct functional connection between the increased ATPase activity and viral replication still requires further studies, these mutations speed up viral RNA replication and are sufficient to enhance viral replicative capacity in human primary cell infection and circumvent type I IFN activity. This information may have particular relevance for attenuated vaccine protocols designed for DV.


Assuntos
Células Dendríticas/imunologia , Vacinas contra Dengue/imunologia , Vírus da Dengue/fisiologia , Dengue/imunologia , Serina Endopeptidases/metabolismo , Adenosina Trifosfatases/metabolismo , Células Cultivadas , Células Dendríticas/virologia , Humanos , Evasão da Resposta Imune , Interferon Tipo I/metabolismo , Análise em Microsséries , Monócitos/imunologia , Mutação Puntual/genética , Serina Endopeptidases/genética , Replicação Viral/genética
19.
Korean J Parasitol ; 53(5): 583-95, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26537038

RESUMO

DEAD/DExH-box RNA helicases catalyze the folding and remodeling of RNA molecules in prokaryotic and eukaryotic cells, as well as in many viruses. They are characterized by the presence of the helicase domain with conserved motifs that are essential for ATP binding and hydrolysis, RNA interaction, and unwinding activities. Large families of DEAD/DExH-box proteins have been described in different organisms, and their role in all molecular processes involving RNA, from transcriptional regulation to mRNA decay, have been described. This review aims to summarize the current knowledge about DEAD/DExH-box proteins in selected protozoan and nematode parasites of medical importance worldwide, such as Plasmodium falciparum, Leishmania spp., Trypanosoma spp., Giardia lamblia, Entamoeba histolytica, and Brugia malayi. We discuss the functional characterization of several proteins in an attempt to understand better the molecular mechanisms involving RNA in these pathogens. The current data also highlight that DEAD/DExH-box RNA helicases might represent feasible drug targets due to their vital role in parasite growth and development.


Assuntos
Eucariotos/enzimologia , Regulação da Expressão Gênica , Parasitos/enzimologia , RNA Helicases/metabolismo , RNA/metabolismo , Animais
20.
Mol Cell Biochem ; 410(1-2): 65-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26314252

RESUMO

The DEAD box RNA helicase DDX5 is a multifunctional protein involved in the regulatory events of gene expression. Herein, we presented evidence indicating that DDX5 is transcriptionally upregulated by calcitriol, the hormonal form of vitamin D3. In silico analysis revealed the presence of two putative vitamin D response elements (VDREs) in the DDX5 promoter region. Using luciferase reporter assays, we demonstrated that the DDX5 promoter containing these putative VDREs significantly increased the luciferase activity in vitamin D receptor (VDR)-positive SiHa cells upon calcitriol treatment. Electrophoretic mobility shift assays showed the ability of VDR and retinoid X receptor to interact only with the most proximal VDRE, while chromatin immunoprecipitation analysis confirmed the occupancy of this VDRE by the VDR. Finally, we demonstrated that calcitriol significantly increased both DDX5 mRNA and protein in SiHa cells. In summary, this study shows that DDX5 gene is transcriptionally upregulated by calcitriol through a VDRE located in its proximal promoter. Given the importance of DDX5 as a master regulator of differentiation programs, our study suggests that the pro-differentiating properties of calcitriol may be related with the induction of DDX5.


Assuntos
Calcitriol/farmacologia , RNA Helicases DEAD-box/metabolismo , Receptores de Calcitriol/agonistas , Transcrição Gênica/efeitos dos fármacos , Neoplasias do Colo do Útero/enzimologia , Elemento de Resposta à Vitamina D/efeitos dos fármacos , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Dados de Sequência Molecular , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Receptores X de Retinoides/metabolismo , Transfecção , Regulação para Cima , Neoplasias do Colo do Útero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA