Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foods ; 10(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34945455

RESUMO

Fruits and vegetables contain health-promoting compounds. However, their natural concentration in the plant tissues is low and in most cases is not sufficient to exert the expected pharmacological effects. The application of wounding stress as a tool to increase the content of bioactive compounds in fruits and vegetables has been well characterized. Nevertheless, its industrial application presents different drawbacks. For instance, during the washing and sanitizing steps post-wounding, the primary wound signal (extracellular adenosine triphosphate) that elicits the stress-induced biosynthesis of secondary metabolites is partially removed from the tissue. Furthermore, detrimental reactions that affect the quality attributes of fresh produce are also activated by wounding. Therefore, there is a need to search for technologies that emulate the wound response in whole fruits and vegetables while retaining quality attributes. Herein, the application of non-thermal technologies (NTTs) such as high hydrostatic pressure, ultrasound, and pulsed electric fields are presented as tools for increasing the content of health-promoting compounds in whole fruits and vegetables by inducing a wound-like response. The industrial implementation and economic feasibility of using NTTs as abiotic elicitors is also discussed. Whole fruits and vegetables with enhanced levels of bioactive compounds obtained by NTT treatments could be commercialized as functional foods.

2.
Int J Mol Sci ; 22(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383887

RESUMO

Taro corms contain valuable bioactive molecules effective against cancer and cancer-related risk factors, such as carcinogens and biological agents, several pathophysiological conditions, including oxidative stress and inflammation, while controlling metabolic dysfunctions and boosting the immunological response. Such broad effects are achieved by the taro health-influencing compounds displaying antitumoral, antimutagenic, immunomodulatory, anti-inflammatory, antioxidant, anti-hyperglycemic, and anti-hyperlipidemic activities. Taro bioactivities are attributed to the combination of tarin, taro-4-I polysaccharide, taro polysaccharides 1 and 2 (TPS-1 and TPS-2), A-1/B-2 α-amylase inhibitors, monogalactosyldiacylglycerols (MGDGs), digalactosyldiacylglycerols (DGDGs), polyphenols, and nonphenolic antioxidants. Most of these compounds have been purified and successfully challenged in vitro and in vivo, proving their involvement in the aforementioned activities. Although these health-promoting effects have been recognized since ancient times, as well as other valuable features of taro for food profit, such as hypo-allergenicity, gluten-free, and carbohydrates with medium-glycemic index, taro crop remains underexploited. The popularization of taro intake should be considered a dietary intervention strategy to be applied to improve the overall health status of the organism and as supportive therapy to manage tumorigenesis.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Colocasia/química , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Tubérculos/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Comportamento Alimentar , Avaliação do Impacto na Saúde , Humanos , Nutrientes , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA