Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Urol Oncol ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39095306

RESUMO

The gut microbiome is interlinked with renal cell carcinoma (RCC) and its response to systemic treatment. Mounting data suggests that certain elements of the gut microbiome may correlate with improved outcomes. New generation sequencing techniques and advanced bioinformatic data curation are accelerating the investigation of specific markers and metabolites that could predict treatment response. A variety of new therapeutic strategies, such as fecal microbiota transplantation, probiotic supplements, and dietary interventions, are currently being developed to modify the gut microbiome and improve anticancer therapies in patients with RCC. This review discusses the preliminary evidence indicating the role of the microbiome in cancer treatment, the techniques and tools necessary for its proper study and some of the current forms with which the microbiome can be modulated to improve patient outcomes.

3.
Int J Infect Dis ; 147: 107165, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38977240

RESUMO

OBJECTIVE: The effects of sanitation and hygiene interventions on the gut microbiome and enteric pathogen burden are not well understood. We measured the association between free chlorine residue (FCR) levels in drinking water, microbiome composition, and stool enteric pathogens in infants and young children in Haiti. METHODS: FCR levels were measured in household drinking water and enteric pathogen burden was evaluated using multiplex RT-PCR of stool among 131 children from one month to five years of age living in Mirebalais, Haiti. Microbiome profiling was performed using metagenomic sequencing. RESULTS: Most individuals lived in households with undetectable FCR measured in the drinking water (112/131, 86%). Detection of enteric pathogen DNA in stool was common and did not correlate with household water FCR. The infant microbiome in households with detectable FCR demonstrated reduced richness (fewer total number of species, P = 0.04 Kruskall-Wallis test) and less diversity by Inverse Simpson measures (P = 0.05) than households with undetectable FCR. Infants in households with a detectable FCR were more likely to have abundant Bifidobacterium. Using in vitro susceptibility testing, we found that some Bifidobacterium species were resistant to chlorine. CONCLUSIONS: FCR in household drinking water did not correlate with enteric pathogen burden in our study.


Assuntos
Cloro , Água Potável , Fezes , Microbioma Gastrointestinal , Humanos , Haiti/epidemiologia , Cloro/farmacologia , Água Potável/microbiologia , Lactente , Pré-Escolar , Microbioma Gastrointestinal/efeitos dos fármacos , Fezes/microbiologia , Masculino , Feminino , Purificação da Água
4.
Clin Transl Oncol ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046682

RESUMO

PURPOSE: Immunotherapy using immune checkpoint inhibitors (ICIs) has shown several benefits over traditional therapies. However, the eligible population remains small. Antibiotic (ATB) use might reduce immunotherapy efficacy by disrupting the gut microbiota. However, in China, ATB effect on ICI therapy efficacy remains unelucidated. We aimed to assess the effects of ATBs on the anti-tumor efficacy of ICIs to provide a reference for clinical use. METHODS: We included 134 patients with advanced tumors undergoing ICI therapy at Shanghai Jiading District Central Hospital from January 1, 2021, to October 1, 2023. They were divided into Non-ATB and ATB groups based on ATB use within 30 days before and after ICI administration. Moreover, we compared progression-free (PFS) and overall (OS) survival between the groups. RESULTS: Median PFS and OS were lower in the ATB than in the Non-ATB group (PFS: 4.0 vs. 5.5 months; OS: 5.4 vs. 6.5 months). Univariate analysis revealed that ATB use significantly affected PFS (hazard ratio [HR] = 2.318, 95% confidence interval [CI] = 1.281-4.194, P = 0.005) and OS (HR = 2.115, 95% CI = 1.161-3.850, P = 0.014). Moreover, multivariate analysis revealed poor PFS (HR = 2.573, 95% CI = 1.373-4.826, P = 0.003) and OS (HR = 2.452, 95% CI = 1.298-4.632, P = 0.006) in patients who received ATBs during ICI therapy. CONCLUSIONS: ATB use is negatively correlated with ICI therapy efficacy, leading to reduced PFS and OS in patients undergoing such treatment. Owing to the significant impact of ATBs on the human gut microbiome, regulation of the gut microbiome may emerge as a novel therapeutic target that can enhance the clinical activity of ICIs.

5.
Cell Rep ; 43(7): 114442, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38968070

RESUMO

Despite a growing interest in the gut microbiome of non-industrialized countries, data linking deeply sequenced microbiomes from such settings to diverse host phenotypes and situational factors remain uncommon. Using metagenomic data from a community-based cohort of 1,871 people from 19 isolated villages in the Mesoamerican highlands of western Honduras, we report associations between bacterial species and human phenotypes and factors. Among them, socioeconomic factors account for 51.44% of the total associations. Meta-analysis of species-level profiles across several datasets identified several species associated with body mass index, consistent with previous findings. Furthermore, the inclusion of strain-phylogenetic information modifies the overall relationship between the gut microbiome and the phenotypes, especially for some factors like household wealth (e.g., wealthier individuals harbor different strains of Eubacterium rectale). Our analysis suggests a role that gut microbiome surveillance can play in understanding broad features of individual and public health.


Assuntos
Microbioma Gastrointestinal , Fatores Socioeconômicos , Humanos , Honduras , Microbioma Gastrointestinal/genética , Feminino , Masculino , Adulto , Bactérias/classificação , Bactérias/genética , Filogenia , Pessoa de Meia-Idade
6.
Biochem Pharmacol ; 226: 116363, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38871336

RESUMO

Helminth infections, which affect approximately 1.5 billion individuals worldwide (mainly children), are common in low- and middle-income tropical countries and can lead to various diseases. One crucial factor affecting the occurrence of these diseases is the reduced diversity of the gut microbiome due to antibiotic use. This reduced diversity compromises immune health in hosts and alters host gene expression through epigenetic mechanisms. Helminth infections may produce complex biochemical signatures that could serve as therapeutic targets. Such therapies include next-generation probiotics, live biotherapeutic products, and biochemical drug approaches. Probiotics can bind ferric hydroxide, reducing the iron that is available to opportunistic microorganisms. They also produce short-chain fatty acids associated with immune response modulation, oral tolerance facilitation, and inflammation reduction. In this review, we examine the potential link between these effects and epigenetic changes in immune response-related genes by analyzing methyltransferase-related genes within probiotic strains discussed in the literature. The identified genes were only correlated with methylation in bacterial genes. Various metabolic interactions among hosts, helminth parasites, and intestinal microbiomes can impact the immune system, potentially aiding or hindering worm expulsion through chemical signaling. Implementing a comprehensive strategy using probiotics may reduce the impact of drug-resistant helminth strains.


Assuntos
Países em Desenvolvimento , Microbioma Gastrointestinal , Helmintíase , Probióticos , Probióticos/uso terapêutico , Probióticos/administração & dosagem , Helmintíase/imunologia , Helmintíase/prevenção & controle , Humanos , Animais , Microbioma Gastrointestinal/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos
7.
Braz J Microbiol ; 55(3): 2345-2354, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38913252

RESUMO

The Yanomami are one of the oldest indigenous tribes in the Amazon and are direct descendants of the first people to colonize South America 12,000 years ago. They are located on the border between Venezuela and Brazil, with the Venezuelan side remaining uncontacted. While they maintain a hunter-gatherer society, they are currently experiencing contact with urbanized populations in Brazil. The human gut microbiota of traditional communities has become the subject of recent studies due to the Westernization of their diet and the introduction of antibiotics and other chemicals, which have affected microbial diversity in indigenous populations, thereby threatening their existence. In this study, we preliminarily characterized the diversity of the gut microbiota of the Yanomami, a hunter-gatherer society from the Amazon, experiencing contact with urbanized populations. Similarly, we compared their diversity with the population in Manaus, Amazonas. A metabarcoding approach of the 16 S rRNA gene was carried out on fecal samples. Differences were found between the two populations, particularly regarding the abundance of genera (e.g., Prevotella and Bacteroides) and the higher values of the phyla Bacteroidetes over Firmicutes, which were significant only in the Yanomami. Some bacteria were found exclusively in the Yanomami (Treponema and Succinivibrio). However, diversity was statistically equal between them. In conclusion, the composition of the Yanomami gut microbiota still maintains the profile characteristic of a community with a traditional lifestyle. However, our results suggest an underlying Westernization process of the Yanomami microbiota when compared with that of Manaus, which must be carefully monitored by authorities, as the loss of diversity can be a sign of growing danger to the health of the Yanomami.


Assuntos
Bactérias , Fezes , Microbioma Gastrointestinal , RNA Ribossômico 16S , Urbanização , Brasil , Humanos , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fezes/microbiologia , Indígenas Sul-Americanos , Filogenia , Biodiversidade , Masculino , Adulto
8.
Microorganisms ; 12(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38930576

RESUMO

Living in arid environments presents unique challenges to organisms, including limited food and water, extreme temperatures, and UV exposure. Reptiles, such as the South American leaf-toed gecko (Phyllodactylus gerrhopygus), have evolved remarkable adaptations to thrive in such harsh conditions. The gut microbiome plays a critical role in host adaptation and health, yet its composition remains poorly characterized in desert reptiles. This study aimed to characterize the composition and abundance of the gut microbiome in P. gerrhopygus inhabiting the hyperarid Atacama Desert, taking into account potential sex differences. Fecal samples from adult female and male geckos were analyzed by 16S rRNA gene amplicon sequencing. No significant differences in bacterial alpha diversity were observed between the sexes. However, the phylum Bacteroidota was more abundant in females, while males had a higher Firmicutes/Bacteroidota ratio. The core microbiome was dominated by the phyla Bacteroidota, Firmicutes, and Proteobacteria in both sexes. Analysis of bacterial composition revealed 481 amplicon sequence variants (ASVs) shared by female and male geckos. In addition, 108 unique ASVs were exclusive to females, while 244 ASVs were unique to males. Although the overall bacterial composition did not differ significantly between the sexes, certain taxa exhibited higher relative abundances in each sex group. This study provides insight into the taxonomic structure of the gut microbiome in a desert-adapted reptile and highlights potential sex-specific differences. Understanding these microbial communities is critical for elucidating the mechanisms underlying host resilience in Earth's most arid environments, and for informing conservation efforts in the face of ongoing climate change.

9.
Life Sci ; 350: 122784, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38848939

RESUMO

Calcium is a secondary messenger that interacts with several cellular proteins, regulates various physiological processes, and plays a role in diseases such as viral infections. Next-generation probiotics and live biotherapeutic products are linked to the regulation of intracellular calcium levels. Some viruses can manipulate calcium channels, pumps, and membrane receptors to alter calcium influx and promote virion production and release. In this study, we examined the use of bacteria for the prevention and treatment of viral diseases, such as coronavirus of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Vaccination programs have helped reduce disease severity; however, there is still a lack of well-recognized drug regimens for the clinical management of COVID-19. SARS-CoV-2 interacts with the host cell calcium (Ca2+), manipulates proteins, and disrupts Ca2+ homeostasis. This article explores how viruses exploit, create, or exacerbate calcium imbalances, and the potential role of probiotics in mitigating viral infections by modulating calcium signaling. Pharmacological strategies have been developed to prevent viral replication and block the calcium channels that serve as viral receptors. Alternatively, probiotics may interact with cellular calcium influx, such as Lactobacillus spp. The interaction between Akkermansia muciniphila and cellular calcium homeostasis is evident. A scientific basis for using probiotics to manipulate calcium channel activity needs to be established for the treatment and prevention of viral diseases while maintaining calcium homeostasis. In this review article, we discuss how intracellular calcium signaling can affect viral replication and explore the potential therapeutic benefits of probiotics.


Assuntos
COVID-19 , Cálcio , Probióticos , SARS-CoV-2 , Probióticos/uso terapêutico , Probióticos/farmacologia , Humanos , COVID-19/metabolismo , COVID-19/virologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
10.
Front Mol Biosci ; 11: 1250413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803424

RESUMO

Nutrition during the perinatal period is an essential component of health and one that can severely impact the correct development of a human being and its overall condition, in all the subsequent stages of life. The availability of several compounds, mainly macronutrients and micronutrients, plays a key role in the balanced nutrition of both mother and baby and is a process with direct relation to the gut microbiome. Thus, we hereby refer to the set of small molecules derived from gut microbiome metabolism as the gut metabolome. These continuous processes occurring in the gut of a gestating or lactating mother related to microbial communities and nutrients, can be revealed by metabolomics. In this study, we explore for the first time the gut metabolome of pregnant and lactating women, from our region of Antioquia-Colombia, applying untargeted metabolomics by LC-QTOF-MS, and molecular networking. Regarding the gut metabolome composition of the cohort, we found, key metabolites that can be used as biomarkers of microbiome function, overall metabolic health, dietary intake, pharmacology, and lifestyle. In our cohort, pregnant women evidenced a significantly higher abundance of prostaglandins, alkaloids, corticosteroids, organosilicons, and natural toxins, while in lactating women, lipids stand out. Our results suggest that unveiling the metabolic phenotype of the gut microbiome of an individual, by untargeted metabolomics, allows a broad visualization of the chemical space present in this important niche and enables the recognition of influential indicators of the host's health status and habits, especially of women during this significant perinatal period. This study constitutes the first evidence of the use of untargeted LC-QTOF-MS coupled with molecular networking analysis, of the gut microbiome in a Colombian cohort and establishes a methodology for finding relative abundances of key metabolites, with potential use in nutritional and physiological state assessments, for future personalized health and nutrition practices.

11.
J Periodontal Res ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38757372

RESUMO

AIM: Evidence suggests that translocation of oral pathogens through the oral-gut axis may induce intestinal dysbiosis. This study aimed to evaluate the impact of a highly leukotoxic Aggregatibacter actinomycetemcomitans (Aa) strain on the gut microbiota, intestinal mucosal integrity and immune system in healthy mice. METHODS: Eight-week-old male C57BL6 mice were divided into control (n = 16) and JP2 groups (n = 19), which received intragastric gavage with PBS and with a suspension of Aa JP2 (HK921), respectively, twice a week for 4 weeks. Colonic lamina propria, fecal material, serum, gingival tissues, and mandibles were obtained for analyses of leukocyte populations, inflammatory mediators, mucosal integrity, alveolar bone loss, and gut microbiota. Differences between groups for these parameters were examined by non-parametric tests. RESULTS: The gut microbial richness and the number of colonic macrophages, neutrophils, and monocytes were significantly lower in Aa JP2-infected mice than in controls (p < .05). In contrast, infected animals showed higher abundance of Clostridiaceae, Lactobacillus taiwanensis, Helicobacter rodentium, higher levels of IL-6 expression in colonic tissues, and higher splenic MPO activity than controls (p < .05). No differences in tight junction expression, serum endotoxin levels, and colonic inflammatory cytokines were observed between groups. Infected animals presented also slightly more alveolar bone loss and gingival IL-6 levels than controls (p < .05). CONCLUSION: Based on this model, intragastric administration of Aa JP2 is associated with changes in the gut ecosystem of healthy hosts, characterized by less live/recruited myeloid cells, enrichment of the gut microbiota with pathobionts and decrease in commensals. Negligible levels of colonic pro-inflammatory cytokines, and no signs of mucosal barrier disruption were related to these changes.

12.
Microbiome Res Rep ; 3(1): 12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455082

RESUMO

Background: The infant gut microbiome is a complex community that influences short- and long-term health. Its assembly and composition are governed by variables such as the feeding type. Breast milk provides infants an important supply of human milk oligosaccharides (HMO), a broad family of carbohydrates comprising neutral, fucosylated, and sialylated molecules. There is a positive association between HMOs and the overrepresentation of Bifidobacterium species in the infant gut, which is sustained by multiple molecular determinants present in the genomes of these species. Infant-gut-associated Bifidobacterium species usually share a similar niche and display similar HMO inclinations, suggesting they compete for these resources. There is also strong evidence of cross-feeding interactions between HMO-derived molecules and bifidobacteria. Methods: In this study, we screened for unidirectional and bidirectional interactions between Bifidobacterium and other species using individual HMO. Bifidobacterium bifidum and Bacteroides thetaiotaomicron increased the growth of several other species when their supernatants were used, probably mediated by the partial degradation of HMO. In contrast, Bifidobacterium longum subsp. infantis. supernatants did not exhibit positive growth. Results: Bifidobacterium species compete for lacto-N-tetraose, which is associated with reduced bidirectional growth. The outcome of these interactions was HMO-dependent, in which the two species could compete for one substrate but cross-feed on another. 2'-fucosyllactose and lacto-N-neotetraose are associated with several positive interactions that generally originate from the partial degradation of these HMOs. Conclusion: This study presents evidence for complex interactions during HMO utilization, which can be cooperative or competitive, depending on the nature of the HMO. This information could be useful for understanding how breast milk supports the growth of some Bifidobacterium species, shaping the ecology of this important microbial community.

13.
mSystems ; 9(3): e0070723, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376180

RESUMO

Increasing levels of industrialization have been associated with changes in gut microbiome structure and loss of features thought to be crucial for maintaining gut ecological balance. The stability of gut microbial communities over time within individuals seems to be largely affected by these changes but has been overlooked among transitioning populations from low- to middle-income countries. Here, we used metagenomic sequencing to characterize the temporal dynamics in gut microbiomes of 24 individuals living an urban non-industrialized lifestyle in the Brazilian Amazon. We further contextualized our data with 165 matching longitudinal samples from an urban industrialized and a rural non-industrialized population. We show that gut microbiome composition and diversity have greater variability over time among non-industrialized individuals when compared to industrialized counterparts and that taxa may present diverse temporal dynamics across human populations. Enterotype classifications show that community types are generally stable over time despite shifts in microbiome structure. Furthermore, by tracking genomes over time, we show that levels of bacterial population replacements are more frequent among Amazonian individuals and that non-synonymous variants accumulate in genes associated with degradation of host dietary polysaccharides. Taken together, our results suggest that the stability of gut microbiomes is influenced by levels of industrialization and that tracking microbial population dynamics is important to understand how the microbiome will adapt to these transitions.IMPORTANCEThe transition from a rural or non-industrialized lifestyle to urbanization and industrialization has been linked to changes in the structure and function of the human gut microbiome. Understanding how the gut microbiomes changes over time is crucial to define healthy states and to grasp how the gut microbiome interacts with the host environment. Here, we investigate the temporal dynamics of gut microbiomes from an urban and non-industrialized population in the Amazon, as well as metagenomic data sets from urban United States and rural Tanzania. We showed that healthy non-industrialized microbiomes experience greater compositional shifts over time compared to industrialized individuals. Furthermore, bacterial strain populations are more frequently replaced in non-industrialized microbiomes, and most non-synonymous mutations accumulate in genes associated with the degradation of host dietary components. This indicates that microbiome stability is affected by transitions to industrialization, and that strain tracking can elucidate the ecological dynamics behind such transitions.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Brasil , Bactérias , Urbanização
14.
Microorganisms ; 12(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38399728

RESUMO

Parkinson's disease (PD) is a chronic and progressive neurodegenerative disease with the major symptoms comprising loss of movement coordination (motor dysfunction) and non-motor dysfunction, including gastrointestinal symptoms. Alterations in the gut microbiota composition have been reported in PD patients vs. controls. However, it is still unclear how these compositional changes contribute to disease etiology and progression. Furthermore, most of the available studies have focused on European, Asian, and North American cohorts, but the microbiomes of PD patients in Latin America have not been characterized. To address this problem, we obtained fecal samples from Colombian participants (n = 25 controls, n = 25 PD idiopathic cases) to characterize the taxonomical community changes during disease via 16S rRNA gene sequencing. An analysis of differential composition, diversity, and personalized computational modeling was carried out, given the fecal bacterial composition and diet of each participant. We found three metabolites that differed in dietary habits between PD patients and controls: carbohydrates, trans fatty acids, and potassium. We identified six genera that changed significantly in their relative abundance between PD patients and controls, belonging to the families Lachnospiraceae, Lactobacillaceae, Verrucomicrobioaceae, Peptostreptococcaceae, and Streptococcaceae. Furthermore, personalized metabolic modeling of the gut microbiome revealed changes in the predicted production of seven metabolites (Indole, tryptophan, fructose, phenylacetic acid, myristic acid, 3-Methyl-2-oxovaleric acid, and N-Acetylneuraminic acid). These metabolites are associated with the metabolism of aromatic amino acids and their consumption in the diet. Therefore, this research suggests that each individual's diet and intestinal composition could affect host metabolism. Furthermore, these findings open the door to the study of microbiome-host interactions and allow us to contribute to personalized medicine.

15.
mSystems ; 9(3): e0071523, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38363147

RESUMO

Bifidobacterium longum subsp. infantis is a representative and dominant species in the infant gut and is considered a beneficial microbe. This organism displays multiple adaptations to thrive in the infant gut, regarded as a model for human milk oligosaccharides (HMOs) utilization. These carbohydrates are abundant in breast milk and include different molecules based on lactose. They contain fucose, sialic acid, and N-acetylglucosamine. Bifidobacterium metabolism is complex, and a systems view of relevant metabolic pathways and exchange metabolites during HMO consumption is missing. To address this limitation, a refined genome-scale network reconstruction of this bacterium is presented using a previous reconstruction of B. infantis ATCC 15967 as a template. The latter was expanded based on an extensive revision of genome annotations, current literature, and transcriptomic data integration. The metabolic reconstruction (iLR578) accounted for 578 genes, 1,047 reactions, and 924 metabolites. Starting from this reconstruction, we built context-specific genome-scale metabolic models using RNA-seq data from cultures growing in lactose and three HMOs. The models revealed notable differences in HMO metabolism depending on the functional characteristics of the substrates. Particularly, fucosyl-lactose showed a divergent metabolism due to a fucose moiety. High yields of lactate and acetate were predicted under growth rate maximization in all conditions, whereas formate, ethanol, and 1,2-propanediol were substantially lower. Similar results were also obtained under near-optimal growth on each substrate when varying the empirically observed acetate-to-lactate production ratio. Model predictions displayed reasonable agreement between central carbon metabolism fluxes and expression data across all conditions. Flux coupling analysis revealed additional connections between succinate exchange and arginine and sulfate metabolism and a strong coupling between central carbon reactions and adenine metabolism. More importantly, specific networks of coupled reactions under each carbon source were derived and analyzed. Overall, the presented network reconstruction constitutes a valuable platform for probing the metabolism of this prominent infant gut bifidobacteria.IMPORTANCEThis work presents a detailed reconstruction of the metabolism of Bifidobacterium longum subsp. infantis, a prominent member of the infant gut microbiome, providing a systems view of its metabolism of human milk oligosaccharides.


Assuntos
Fucose , Leite Humano , Lactente , Feminino , Humanos , Leite Humano/química , Fucose/análise , Lactose/análise , Oligossacarídeos/análise , Bifidobacterium/genética , Bifidobacterium longum subspecies infantis/metabolismo , Acetatos/análise , Carbono/análise , Lactatos/análise
16.
Sleep Breath ; 28(1): 561-563, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37581760

RESUMO

Sleep disruption, especially that resulting from obstructive sleep apnea (OSA) - a widely prevalent sleep disorder - can lead to important systemic repercussions. We raise a subject of current interest, namely the possible relationship between sleep in general, OSA, and irritable bowel syndrome (IBS), an intestinal disease that can be made worse by stressful events. The intermittent hypoxia caused by OSA can induce alterations in the gut microbiota, which can lead to the dysregulation of the gut-brain axis and the worsening of IBS. This may be considered to be a circular relationship, with OSA playing a crucial role in the worsening of bowel symptoms, which in turn have a negative effect on sleep. Thus, based on previous evidence, we suggest that improving sleep quality could be a key to disrupting this relationship of IBS aggravation and OSA.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Apneia Obstrutiva do Sono , Humanos , Microbioma Gastrointestinal/fisiologia , Eixo Encéfalo-Intestino , Sono
17.
J Am Nutr Assoc ; 43(2): 139-146, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37459239

RESUMO

Atopic dermatitis (AD) is a prevalent chronic skin disease affecting all age groups. The connection with the gut microbiome led to oral probiotics as a therapeutic strategy. However, being viable microorganisms, probiotics might present risks. Thus, non-viable postbiotics have been considered as an alternative. We aimed to evaluate the efficacy of oral Lactobacillus postbiotics for managing symptoms of AD in pediatric and adult patients. A systematic review was conducted following PRISMA guidelines. Nine randomized controlled trials assessing the effects of non-viable Lactobacillus spp. administered orally to patients diagnosed with AD were included in the review, in which 512 subjects were evaluated after the intervention. Most studies allowed the concomitant usage of corticosteroids. Three studies focused on adults and indicated symptom improvement. In contrast, three out of six trials evaluating pediatric patients did not report postbiotics-favoring results. The dosage seems to be relevant for outcome determination. Two trials compared postbiotics with their viable analogs, and only one reported positive results in both groups. Postbiotics-associated shifts in gut microbial communities were reported in one trial. Mild adverse effects were detected by a single study. The overall results suggested that Lactobacillus postbiotics might be successfully used as adjuvant AD therapy in adults. Thus far, data do not indicate efficacy in pediatric patients. Standardizing nomenclatures and experimental procedures, as well as expanding the studies to more geographic locations and assessing comprehensively the effects on the gut microbiome would provide better perspectives of postbiotics as a therapeutic option for AD.


The usage of oral probiotics has been driven by the recognized connection between atopic dermatitis (AD) and the gut microbiome.Probiotics might offer risks as they are viable microorganisms and non-viable postbiotics have been considered as an alternative. However, their effectiveness and safety in AD patients is not totally clear.This systematic review of clinical trials evaluated the effects of non-viable Lactobacillus spp. administered orally to AD patients.Results suggested that adult patients might benefit from oral Lactobacillus postbiotics; however, the efficacy in pediatric patients is uncertain.


Assuntos
Dermatite Atópica , Microbioma Gastrointestinal , Probióticos , Adulto , Criança , Humanos , Dermatite Atópica/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Probióticos/uso terapêutico , Lactobacillus
18.
Gut Microbes ; 15(2): 2281010, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37992406

RESUMO

A high proportion of enteric infections, including those caused by diarrheagenic Escherichia coli (DEC), are asymptomatic for diarrhea. The factors responsible for the development of diarrhea symptoms, or lack thereof, remain unclear. Here, we used DEC isolate genome and whole stool microbiome data from a case-control study of diarrhea in Ecuador to examine factors associated with diarrhea symptoms accompanying DEC carriage. We investigated i) pathogen abundance, ii) gut microbiome characteristics, and iii) strain-level pathogen characteristics from DEC infections with diarrhea symptoms (symptomatic infections) and without diarrhea symptoms (asymptomatic infections). We also included data from individuals with and without diarrhea who were not infected with DEC (uninfected cases and controls). i) E. coli relative abundance in the gut microbiome was highly variable, but higher on-average in individuals with symptomatic compared to asymptomatic DEC infections. Similarly, the number and relative abundances of virulence genes in the gut were higher in symptomatic than asymptomatic DEC infections. ii) Measures of microbiome diversity were similar regardless of diarrhea symptoms or DEC carriage. Proteobacterial families that have been described as pathobionts were enriched in symptomatic infections and uninfected cases, whereas potentially beneficial taxa, including the Bacteroidaceae and Bifidobacteriaceae, were more abundant in individuals without diarrhea. An analysis of high-level gene functions recovered in metagenomes revealed that genes that were differentially abundant by diarrhea and DEC infection status were more abundant in symptomatic than asymptomatic DEC infections. iii) DEC isolates from symptomatic versus asymptomatic individuals showed no significant differences in virulence or accessory gene content, and there was no phylogenetic signal associated with diarrhea symptoms. Together, these data suggest signals that distinguish symptomatic from asymptomatic DEC infections. In particular, the abundance of E. coli, the virulence gene content of the gut microbiome, and the taxa present in the gut microbiome have an apparent role.


Assuntos
Infecções por Escherichia coli , Microbioma Gastrointestinal , Humanos , Escherichia coli , Infecções por Escherichia coli/microbiologia , Microbioma Gastrointestinal/genética , Equador , Estudos de Casos e Controles , Diarreia/microbiologia
19.
Anim Reprod ; 20(3): e20230082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026003

RESUMO

The neonatal period represents a critical stage for the establishment and development of the gut microbiota, which profoundly influences the future health trajectory of individuals. This review examines the importance of intestinal microbiota in humans and dogs, aiming to elucidate the distinct characteristics and variations in the composition between these two species. In humans, the intestinal microbiota contributes to several crucial physiological processes, including digestion, nutrient absorption, immune system development, and modulation of host metabolism. Dysbiosis, an imbalance or disruption of the gut microbial community, has been linked to various disorders, such as inflammatory bowel disease, obesity, and even neurological conditions. Furthermore, recent research has unveiled the profound influence of the gut-brain axis, emphasizing the bidirectional communication between the gut microbiota and the central nervous system, impacting cognitive function and mental health. Similarly, alterations in the canine intestinal microbiota have been associated with gastrointestinal disorders, including chronic enteropathy, such as inflammatory bowel disease, food allergies, and ulcerative histiocytic colitis. However, our understanding of the intricacies and functional significance of the intestinal microbiota in dogs remains limited. Understanding the complex dynamics of the intestinal microbiota in both humans and dogs is crucial for devising effective strategies to promote health and manage disease. Moreover, exploring the similarities and differences in the gut microbial composition between these two species can facilitate translational research, potentially leading to innovative therapeutic interventions and strategies to enhance the well-being of both humans and dogs.

20.
Curr Med Chem ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37855342

RESUMO

The Enteric Nervous System (ENS) is described as a division of the Peripheral Nervous System (PNS), located within the gut wall and it is formed by two main plexuses: the myenteric plexus (Auerbach's) and the submucosal plexus (Meissner's). The contribution of the ENS to the pathophysiology of various neurological diseases such as Parkinson's or Alzheimer's disease has been described in the literature, while some other studies have found a connection between epilepsy and the gastrointestinal tract. The above could be explained by cholinergic neurons and neurotransmission systems in the myenteric and submucosal plexuses, regulating the vagal excitability effect. It is also understandable, as the discharges arising in the amygdala are transmitted to the intestine through projections the dorsal motor nucleus of the vagus, giving rise to efferent fibers that stimulate the gastrointestinal tract and consequently the symptoms at this level. Therefore, this review's main objective is to argue in favor of the existing relationship of the ENS with the Central Nervous System (CNS) as a facilitator of epileptogenic or ictogenic mechanisms. The gut microbiota also participates in this interaction; however, it depends on many individual factors of each human being. The link between the ENS and the CNS is a poorly studied epileptogenic site with a big impact on one of the most prevalent neurological conditions such as epilepsy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA