Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Microbes Infect ; : 105385, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950642

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas' disease, can infect both phagocytic and non-phagocytic cells. T. cruzi gp82 and gp90 are cell surface proteins belonging to Group II trans-sialidases known to be involved in host cell binding and invasion. Phosphatidylinositol kinases (PIK) are lipid kinases that phosphorylate phospholipids in their substrates or in themselves, regulating important cellular functions such as metabolism, cell cycle and survival. Vps34, a class III PIK, regulates autophagy, trimeric G-protein signaling, and the mTOR (mammalian Target of Rapamycin) nutrient-sensing pathway. The mammalian autophagy gene Beclin1 interacts to Vps34 forming Beclin 1-Vps34 complexes involved in autophagy and protein sorting. In T. cruzi epimastigotes, (a non-infective replicative form), TcVps34 has been related to morphological and functional changes associated to vesicular trafficking, osmoregulation and receptor-mediated endocytosis. We aimed to characterize the role of TcVps34 during invasion of HeLa cells by metacyclic (MT) forms. MTs overexpressing TcVps34 showed lower invasion rates compared to controls, whilst exhibiting a significant decrease in gp82 expression in the parasite surface. In addition, we showed that T. cruzi Beclin (TcBeclin1) colocalizes with TcVps34 in epimastigotes, thus suggesting the formation of complexes that may play conserved cellular roles already described for other eukaryotes.

2.
Front Cell Infect Microbiol ; 11: 769722, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737979

RESUMO

Metacyclic trypomastigote (MT) forms of Trypanosoma cruzi have been shown to release into medium gp82 and gp90, the stage-specific surface molecules that regulate host cell invasion, either in vesicles or in soluble form. Here, we found that during interaction of poorly invasive G strain with the host cell, gp82 and gp90 were released in vesicle-like forms, whereas no such release by highly invasive CL strain was observed. Shedding of vesicles of varying sizes by CL and G strains was visualized by scanning electron microscopy, and the protein profile of conditioned medium (CM) of the two strains was similar, but the content of gp82 and gp90 differed, with both molecules being detected in G strain as bands of high intensity in Western blotting, whereas in CL strain, they were barely detectable. Confocal images revealed a distinct distribution of gp82 and gp90 on MT surface of CL and G strains. In cell invasion assays, addition of G strain CM resulted in decreased CL strain internalization. Depletion of gp82 in G strain CM, by treatment with specific mAb-coupled magnetic beads, increased its inhibitory effect on CL strain invasion, in contrast to CM depleted in gp90. The effect of cholesterol-depleting drug methyl-ß-cyclodextrin (MßCD) on gp82 and gp90 release by MTs was also examined. G strain MTs, untreated or treated with MßCD, were incubated in serum-containing medium or in nutrient-depleted PBS++, and the CM generated under these conditions was analyzed by Western blotting. In PBS++, gp82 and gp90 were released at lower levels by untreated MTs, as compared with MßCD-treated parasites. CM from untreated and MßCD-treated G strain, generated in PBS++, inhibited CL strain internalization. Treatment of CL strain MTs with MßCD resulted in increased gp82 and gp90 shedding and in decreased host cell invasion. The involvement of phospholipase C (PLC) on gp82 and gp90 shedding was also investigated. The CM from G strain MTs pretreated with specific PLC inhibitor contained lower levels of gp82 and gp90, as compared with untreated parasites. Our results contribute to shed light on the mechanism by which T. cruzi releases surface molecules implicated in host cell invasion.


Assuntos
Trypanosoma cruzi , Células HeLa , Humanos , Proteínas de Protozoários , Esteróis , Fosfolipases Tipo C , Glicoproteínas Variantes de Superfície de Trypanosoma
3.
Parasitol Res ; 118(5): 1493-1500, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30847614

RESUMO

Oral infection by Trypanosoma cruzi has been responsible for frequent outbreaks of acute Chagas disease in the north of South America and in the Amazon region, where T. cruzi genetic group TcI predominates. TcI strains from different geographical regions have been used in oral infection in mice, but there is no information about strains from Mexico where TcI is prevalent. Here, we analyzed four Mexican strains as concerns the course of oral infection, the ability to invade host cells in vitro, and the profile of metacyclic trypomastigote surface molecules gp82 and gp90 that are implicated in parasite internalization. Oral infection of mice with metacyclic forms of all strains resulted in reduced blood and tissue parasitism, and mild to moderate inflammatory process in the heart/skeletal muscle. They expressed pepsin-resistant gp82 and gp90 molecules at high levels and invaded host cells poorly in full nutrient medium and efficiently under nutrient-deprived condition. The properties exhibited by Mexican strains were similar to those displayed by TcI strains from other geographical regions, reinforcing the notion that these features are common to the genetic group TcI as a whole.


Assuntos
Doença de Chagas/transmissão , Proteínas de Protozoários/biossíntese , Trypanosoma cruzi/genética , Trypanosoma cruzi/patogenicidade , Glicoproteínas Variantes de Superfície de Trypanosoma/biossíntese , Animais , Linhagem Celular Tumoral , Doença de Chagas/parasitologia , Células HeLa , Humanos , México , Camundongos , Proteínas de Protozoários/genética , América do Sul , Trypanosoma cruzi/classificação , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
4.
Mem. Inst. Oswaldo Cruz ; 104(supl.1): 101-107, July 2009. ilus
Artigo em Inglês | LILACS | ID: lil-520870

RESUMO

Frequent reports on outbreaks of acute Chagas' disease by ingestion of food contaminated with parasites from triatomine insects illustrate the importance of this mode of transmission. Studies on oral Trypanosoma cruzi infection in mice have indicated that metacyclic trypomastigotes invade the gastric mucosal epithelium. A key molecule in this process is gp82, a stage-specific surface glycoprotein that binds to both gastric mucin and to target epithelial cells. By triggering Ca2+ signalling, gp82 promotes parasite internalisation. Gp82 is relatively resistant to peptic digestion at acidic pH, thus preserving the properties critical for oral infection. The infection process is also influenced by gp90, a metacyclic stage-specific molecule that negatively regulates the invasion process. T. cruzi strains expressing high gp90 levels invade cells poorly in vitro. However, their infectivity by oral route varies considerably due to varying susceptibilities of different gp90 isoforms to peptic digestion. Parasites expressing pepsin-susceptible gp90 become highly invasive against target cells upon contact with gastric juice. Such is the case of a T. cruzi isolate from an acute case of orally acquired Chagas' disease; the gp90 from this strain is extensively degraded upon short period of parasite permanence in the gastric milieu. If such an exacerbation of infectivity occurs in humans, it may be responsible for the severity of Chagas' disease reported in outbreaks of oral infection.


Assuntos
Animais , Humanos , Camundongos , Doença de Chagas/transmissão , Mucosa Gástrica/parasitologia , Proteínas de Protozoários/fisiologia , Trypanosoma cruzi/fisiologia , Glicoproteínas Variantes de Superfície de Trypanosoma/fisiologia , Doença de Chagas/parasitologia , Células Epiteliais/parasitologia , Parasitologia de Alimentos , Insetos Vetores/parasitologia , Trypanosoma cruzi/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA