Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Proteins ; 90(12): 2058-2066, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35833249

RESUMO

The von Willebrand disease (vWD) is the most common hereditary bleeding disorder caused by defects of the von Willebrand Factor (vWF), a large extracellular protein in charge of adhering platelets to sites of vascular lesions. vWF performs this essential homeostatic task via specific protein-protein interactions between the vWF A1 domain and the platelet receptor, the glycoprotein Ib alpha (GPIBα). The two naturally occurring vWF A1 domain mutations G1324A and G1324S, near the GPIBα binding site, induce a dramatic decrease in platelet adhesion, resulting in a bleeding disorder classified as type 2M vWD. However, the reason for the drastic phenotypic response induced by these two supposedly minor modifications remains unclear. We addressed this question using a combination of equilibrium-molecular dynamics (MD) and nonequilibrium MD-based free energy simulations. Our data confirms that both mutations maintain the highly stable Rossmann fold of the vWF A1 domain. G1324A and G1324S mutations hardly changed the per-residue flexibility of the A1 domain but induced a global conformational change affecting the region near the binding site to GPIBα. Furthermore, we observed two significant changes in the vWF A1 domain upon mutation, the global redistribution of the internal mechanical stress and the increased thermodynamic stability of the A1 domain. These observations are consistent with previously reported mutations increasing the melting temperature. Overall, our results support the idea of thermodynamic conformational restriction of A1-before the binding to GPIBα-as a crucial factor determining the loss-of-function of the G1324A(S) vWD mutants.


Assuntos
Doenças de von Willebrand , Fator de von Willebrand , Humanos , Sítios de Ligação , Plaquetas/metabolismo , Ligação Proteica , Termodinâmica , Doenças de von Willebrand/genética , Fator de von Willebrand/química , Fator de von Willebrand/genética
2.
Platelets ; 33(6): 811-816, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35417661

RESUMO

The utility of mouse models to dissect the molecular basis of hemostasis and thrombosis is now well established. The anucleate properties of circulating blood platelet and their specialized release from mature megakaryocytes makes the use of in vivo models all the more informative and powerful. Indeed, they are powerful but there do exist limitations. Here, we review the contributions of mouse models to the pathogenesis of the Bernard-Soulier syndrome, their use in platelet-specific gene expression, the recent development of mice expressing both human GPIb-IX and human von Willebrand factor (VWF), and finally the use of GPIb-IX mouse models to examine the impact of platelet biology beyond clotting. The humanization of the receptor and ligand axis is likely to be a major advancement in the characterization of therapeutics in the complex pathogenesis that drives thrombosis. When appropriate, we highlight some limitations of each mouse model, but this is not to minimize the contributions these models to the field. Rather, the limitations are meant to provide context for any direct application to the important mechanisms supporting human primary hemostasis and thrombosis.


Assuntos
Síndrome de Bernard-Soulier , Trombose , Animais , Síndrome de Bernard-Soulier/genética , Plaquetas/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Trombose/metabolismo , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
3.
Toxicon ; 159: 50-60, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30677414

RESUMO

Victims of Bothrops jararaca snakebites manifest bleedings, blood incoagulability, platelet dysfunction, and thrombocytopenia, and the latter has been directly implicated in the genesis of hemorrhagic diathesis. We addressed herein the direct effects of B. jararaca venom (BjV) on ex vivo platelet aggregation and granule secretion in washed human and mouse platelets. BjV directly aggregated platelets, but the extent of platelet aggregation was lower in human than mouse platelets. On the other hand, BjV (24.4 µg/mL) and thrombin (0.1 U/mL) induced a similar extent of ATP and platelet factor 4 (PF4) secretion in both species. BjV-induced platelet aggregation was independent of the platelet dense body content, as in pearl mouse (Ap3b1-/-) platelets, whose dense bodies are deficient in adenine nucleotides and serotonin, the extent of platelet aggregation was superior to that induced in BALB/c or C57BL/6 mice. BjV-induced ß-hexosaminidase secretion in human platelets was less intense than that evoked by thrombin, and the contrary was observed in mouse platelets. Irreversible inactivation of platelet cyclooxygenase 1 by acetylsalicylic acid did not reduce BjV-induced platelet aggregation. BjV exerted no cytotoxic activity in human and mouse platelets, as evaluated by lactate dehydrogenase loss. Eptifibatide, which inhibits the binding of fibrinogen to platelet glycoprotein complex GPIIb-IIIa, differently blocked BjV-induced platelet aggregation in mice and humans. BjV-induced platelet aggregation did not depend on snake venom serine proteinases nor metalloproteinases in mice, whilst serine proteinases were rather important for platelet aggregation in humans. Our results show that BjV induces direct activation, aggregation, and secretion in human and mouse platelets, but it exerts diverse responses in them, which should be considered in comparative studies to understand pathophysiological events during Bothrops envenomation.


Assuntos
Plaquetas/efeitos dos fármacos , Bothrops , Venenos de Crotalídeos/toxicidade , Agregação Plaquetária/efeitos dos fármacos , Trombina/farmacologia , Trifosfato de Adenosina/metabolismo , Adolescente , Adulto , Animais , Plaquetas/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Feminino , Humanos , L-Lactato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Prostaglandina-Endoperóxido Sintases/metabolismo
4.
Toxicon, v. 159, p. 50-60, jan. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2677

RESUMO

Victims of Bothrops jararaca snakebites manifest bleedings, blood incoagulability, platelet dysfunction, and thrombocytopenia, and the latter has been directly implicated in the genesis of hemorrhagic diathesis. We addressed herein the direct effects of B. jararaca venom (BjV) on ex vivo platelet aggregation and granule secretion in washed human and mouse platelets. BjV directly aggregated platelets, but the extent of platelet aggregation was lower in human than mouse platelets. On the other hand, BjV (24.4 mu g/mL) and thrombin (0.1 U/mL) induced a similar extent of ATP and platelet factor 4 (PF4) secretion in both species. BjV-induced platelet aggregation was independent of the platelet dense body content, as in pearl mouse (Ap3b1(-/-))platelets, whose dense bodies are deficient in adenine nucleotides and serotonin, the extent of platelet aggregation was superior to that induced in BALB/c or C57BL/6 mice. BjV-induced beta-hexosaminidase secretion in human platelets was less intense than that evoked by thrombin, and the contrary was observed in mouse platelets. Irreversible inactivation of platelet cyclooxygenase 1 by acetylsalicylic acid did not reduce BjV-induced platelet aggregation. BjV exerted no cytotoxic activity in human and mouse platelets, as evaluated by lactate dehydrogenase loss. Eptifibatide, which inhibits the binding of fibrinogen to platelet glycoprotein complex GPIIb-IIIa, differently blocked BjV-induced platelet aggregation in mice and humans. BjV-induced platelet aggregation did not depend on snake venom serine proteinases nor metalloproteinases in mice, whilst serine proteinases were rather important for platelet aggregation in humans. Our results show that BjV induces direct activation, aggregation, and secretion in human and mouse platelets, but it exerts diverse responses in them, which should be considered in comparative studies to understand pathophysiological events during Bothrops envenomation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA