Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.244
Filtrar
1.
Int J Biometeorol ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136712

RESUMO

Soybean (Glycine max) is the world's most cultivated legume; currently, most of its varieties are Bt. Spodoptera spp. (Lepidoptera: Noctuidae) are important pests of soybean. An artificial neural network (ANN) is an artificial intelligence tool that can be used in the study of spatiotemporal dynamics of pest populations. Thus, this work aims to determine ANN to identify population regulation factors of Spodoptera spp. and predict its density in Bt soybean. For two years, the density of Spodoptera spp. caterpillars, predators, and parasitoids, climate data, and plant age was evaluated in commercial soybean fields. The selected ANN was the one with the weather data from 25 days before the pest's density evaluation. ANN forecasting and pest densities in soybean fields presented a correlation of 0.863. It was found that higher densities of the pest occurred in dry seasons, with less wind, higher atmospheric pressure and with increasing plant age. Pest density increased with the increase in temperature until this curve reached its maximum value. ANN forecasting and pest densities in soybean fields in different years, seasons, and stages of plant development were similar. Therefore, this ANN is promising to be implemented into integrated pest management programs in soybean fields.

2.
Plants (Basel) ; 13(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39124176

RESUMO

The growth of cover crops can contribute to the increase in phosphorus content at depth by root decomposition. The aim of this work was to verify the effect of cover crops on soil phosphorus availability and use by successive plants, and the accumulation of soil P in a no-tillage system conducted for 14 years. This research was carried out during the 2016/2017 and 2017/2018 crop seasons, whose treatments have been installed and maintained since 2003. The experimental design was a randomized block design, and the plots consisted of spring crops: pearl millet, forage sorghum, sunn hemp, and additionally, a fallow/chiseling area. The evaluation of available P was determined by P fractionation. In general, in the two years of evaluation, the accumulation of P in the shoot dry matter was higher in sunn hemp growth, on average 25% higher than pearl millet in 2016 and 40% higher than sorghum in 2017. The highest contents of labile inorganic P were in the sorghum-soybean and fallow/chiseling-soybean successions, with values higher than 50 mg kg-1 of P in the 0-0.1 m soil layer. However, in the other layers analyzed, the cover crops obtained higher availability of labile inorganic P. The systems using cover crops recovered 100% of the P fertilized in soybean.

3.
Neurotox Res ; 42(4): 32, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38949693

RESUMO

Nonketotic hyperglycinemia (NKH) is an inherited disorder of amino acid metabolism biochemically characterized by the accumulation of glycine (Gly) predominantly in the brain. Affected patients usually manifest with neurological symptoms including hypotonia, seizures, epilepsy, lethargy, and coma, the pathophysiology of which is still not completely understood. Treatment is limited and based on lowering Gly levels aiming to reduce overstimulation of N-methyl-D-aspartate (NMDA) receptors. Mounting in vitro and in vivo animal and human evidence have recently suggested that excitotoxicity, oxidative stress, and bioenergetics disruption induced by Gly are relevant mechanisms involved in the neuropathology of NKH. This brief review gives emphasis to the deleterious effects of Gly in the brain of patients and animal models of NKH that may offer perspectives for the development of novel adjuvant treatments for this disorder.


Assuntos
Metabolismo Energético , Glicina , Hiperglicinemia não Cetótica , Estresse Oxidativo , Hiperglicinemia não Cetótica/patologia , Hiperglicinemia não Cetótica/metabolismo , Animais , Humanos , Estresse Oxidativo/fisiologia , Metabolismo Energético/fisiologia , Glicina/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia
4.
Environ Microbiome ; 19(1): 50, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030648

RESUMO

Soybean cultivation in tropical regions relies on symbioses with nitrogen-fixing Bradyrhizobium and plant growth-promoting bacteria (PGPBs), reducing environmental impacts of N fertilizers and pesticides. We evaluate the effects of soybean inoculation with different bacterial consortia combined with PGPBs or microbial secondary metabolites (MSMs) on rhizosoil chemistry, plant physiology, plant nutrition, grain yield, and rhizosphere microbial functions under field conditions over three growing seasons with four treatments: standard inoculation of Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens consortium (SI); SI plus foliar spraying with Bacillus subtilis (SI + Bs); SI plus foliar spraying with Azospirillum brasilense (SI + Az); and SI plus seed application of MSMs enriched in lipo-chitooligosaccharides extracted from B. diazoefficiens and Rhizobium tropici (SI + MSM). Rhizosphere microbial composition, diversity, and function was assessed by metagenomics. The relationships between rhizosoil chemistry, plant nutrition, grain yield, and the abundance of microbial taxa and functions were determined by generalized joint attribute modeling. The bacterial consortia had the most significant impact on rhizosphere soil fertility, which in turn affected the bacterial community, plant physiology, nutrient availability, and production. Cluster analysis identified microbial groups and functions correlated with shifts in rhizosoil chemistry and plant nutrition. Bacterial consortia positively modulated specific genera and functional pathways involved in biosynthesis of plant secondary metabolites, amino acids, lipopolysaccharides, photosynthesis, bacterial secretion systems, and sulfur metabolism. The effects of the bacterial consortia on the soybean holobiont, particularly the rhizomicrobiome and rhizosoil fertility, highlight the importance of selecting appropriate consortia for desired outcomes. These findings have implications for microbial-based agricultural practices that enhance crop productivity, quality, and sustainability.

5.
Plant Dis ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982677

RESUMO

Soybean [Glycine max (L.) Merr.] is one of the world's five major food crops, and Brazil produces the highest share at around 42%. Anthracnose caused by Colletotrichum is an important limiting factor to soybean production. In November 2013, anthracnose symptoms, characterized by brown irregular-shaped lesions on petioles, stems, and pods were observed in soybean fields (1% of incidence) in Vera, Mato Grosso State, Brazil. From the five plants gathered in the field, three leaves along with their corresponding petioles were meticulously chosen for the removal of symptomatic tissues. Sampling of these tissues involved carefully cutting a 0.5 × 0.5 cm fragment in the lesion area. The fragments were disinfected with 70% ethanol for 1 min, followed by 1% sodium hypochlorite for 2 min. Then the fragments were rinsed three times in sterile distilled water, placed on water-agar, and incubated at 25 °C for four days, in a 12/12 h photoperiod. Hyphal tips were transferred to potato dextrose agar (PDA) plates and incubated as previously described for seven days. A Colletotrichum sp. single-spore isolate (LFN0461) was selected, grown, preserved in filter paper, and stored at -80 °C. In 2023, it was reactivated for molecular characterization. On PDA, colony showed a rough-like mycelial growth, violaceous-black (front/reverse), with curved-shaped conidia 14.7 - 28.2 × 2.1 - 8.96 µm (average 18.4 × 4.7 µm). The DNA was extracted from 10-day-old mycelium using the cetyltrimethylammonium bromide (CTAB) method. The rDNA internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), histone (HIS3), and ß-tubulin 2 (TUB2) regions were amplified by polymerase chain reaction (PCR), using the primer pairs ITS-1F + ITS-4 (Gardes and Bruns 1993; White et al. 1990), GDF1 + GDR1 (Guerber et al. 2003), CYLH3F + CYLH3R (Crous et al. 2006), and Bt2A + Bt2B (Glass and Donaldson 1995), respectively. The sequences were deposited in the GenBank database (accession numbers: PP209207 - ITS; PP213392 - GAPDH; PP213393 - HIS3; MN688797 - TUB2). The reconstruction of the multilocus phylogenetic tree revealed that the LFN0461 isolate clustered with C. cholorophyti reference strain (IMI 103806) with 99.9% of Bayesian probability. Given the seed-borne nature of soybean anthracnose (Boufleur et al. 2021; Yang et al. 2013), pathogenicity tests were carried out by soybean seeds inoculation. Fifty seeds of NS6220 IPRO (Nidera) cultivar were inoculated by water restriction method, with LFN0461 colonies grown on PDA amended with mannitol (Machado et al. 2004), while 50 seeds were placed on PDA amended with mannitol as negative control. Soybean seeds remained in contact with the inoculum for 48 hours. Subsequently, seeds were sown in 2 L pots (n = 10) containing sterilized substrate, which were placed in a greenhouse at 25 ± 5 ºC. After 10 days, inoculated soybean seedlings exhibited characteristic necrotic lesions on cotyledons and hypocotyls, while negative control plants remained asymptomatic. Colletotrichum chlorophyti was successfully reisolated from the symptomatic tissues. Currently, C. chlorophyti has been reported to cause soybean anthracnose and infect seeds in the United States (Yang et al. 2013, 2012). Although this pathogen has not been reported since our first observation in 2013 in Brazil, many Colletotrichum isolates are misidentified due to reliance on morphology (Boufleur et al. 2021). To our knowledge, this study is the first report of C. chlorophyti causing soybean anthracnose in Brazil, joining a new group of emergent Colletotrichum spp. associated with this disease.

6.
Pest Manag Sci ; 80(10): 5452-5464, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38942611

RESUMO

BACKGROUND: Plant volatile organic compounds (VOCs) play a crucial role in mediating interactions between plants, herbivores and natural enemies. Among these VOCs, methyl salicylate and (E,E)-α-farnesene are emitted as herbivore-induced plant volatiles (HIPVs) by soybean plants in response to feeding by the brown stink bug Eushistus heros. These HIPVs function as synomones, influencing the foraging behaviour of the egg parasitoid, Telenomus podisi, the main natural enemy of E. heros, one of the major soybean pests in Brazil. RESULTS: Laboratory experiments showed that two soybean cultivars, BRS 7580 and BRS 7880, produced similar qualitative blends of HIPVs, with methyl salicylate, (E,E)-α-farnesene and (Z)-3-hexenyl acetate being produced by both cultivars. Soybean cultivar BRS 7580 produced a significant lower amount of HIPVs compared to BRS 7880 but this difference did not affect the attractiveness of the egg parasitoid Telenomus podisi. Field experiments using these two cultivars and synthetic applications of methyl salicylate and (E,E)-α-farnesene showed a substantial increase in egg parasitism in all treated areas. Parasitism rates ranged from 50% to 80% in areas where these HIPVs were deployed, compared to only 10% in untreated control areas. CONCLUSIONS: The egg parasitoid Telenomus podisi demonstrated an adept ability in recognising between HIPVs in soybean blends, even in the presence of significant quantitative differences. The results from the field experiment showed the potential of HIPVs in attracting natural enemies to specific target areas within fields. (E,E)-α-Farnesene showed an improved action during the later stages of soybean growth, notably at R6. In addition, this volatile attracted other families of natural enemies. © 2024 Society of Chemical Industry.


Assuntos
Glycine max , Heterópteros , Salicilatos , Sesquiterpenos , Vespas , Glycine max/parasitologia , Animais , Heterópteros/parasitologia , Heterópteros/fisiologia , Vespas/fisiologia , Vespas/efeitos dos fármacos , Óvulo/parasitologia , Óvulo/efeitos dos fármacos , Controle Biológico de Vetores , Compostos Orgânicos Voláteis , Herbivoria , Feminino
7.
BMC Microbiol ; 24(1): 194, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849775

RESUMO

Soybean is the main oilseed cultivated worldwide. Even though Brazil is the world's largest producer and exporter of soybean, its production is severely limited by biotic factors. Soil borne diseases are the most damaging biotic stressors since they significantly reduce yield and are challenging to manage. In this context, the present study aimed to evaluate the potential of a bacterial strain (Ag109) as a biocontrol agent for different soil pathogens (nematodes and fungi) of soybean. In addition, the genome of Ag109 was wholly sequenced and genes related to secondary metabolite production and plant growth promotion were mined. Ag109 showed nematode control in soybean and controlled 69 and 45% of the populations of Meloidogyne javanica and Pratylenchus brachyurus, respectively. Regarding antifungal activity, these strains showed activity against Macrophomia phaseolina, Rhizoctonia solani, and Sclerotinia sclerotiorum. For S. sclerotiorum, this strain increased the number of healthy plants and root dry mass compared to the control (with inoculation). Based on the average nucleotide identity and digital DNA-DNA hybridization, this strain was identified as Bacillus velezensis. Diverse clusters of specific genes related to secondary metabolite biosynthesis and root growth promotion were identified, highlighting the potential of this strain to be used as a multifunctional microbial inoculant that acts as a biological control agent while promoting plant growth in soybean.


Assuntos
Ascomicetos , Bacillus , Genoma Bacteriano , Glycine max , Doenças das Plantas , Animais , Bacillus/genética , Glycine max/microbiologia , Glycine max/parasitologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Genoma Bacteriano/genética , Ascomicetos/genética , Rhizoctonia/genética , Controle Biológico de Vetores , Agentes de Controle Biológico , Sequenciamento Completo do Genoma , Tylenchoidea , Filogenia , Antibiose , Brasil
8.
Nutrients ; 16(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38931197

RESUMO

(1) Background: Dysregulated serum amino acids (AA) are known to be associated with obesity and risk of Type 2 Diabetes (T2D) in adults, and recent studies support the same notion in the pubertal age. It is, however, unknown whether childhood overweight may already display alterations of circulating AA. (2) Methods: We used liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS)-targeted metabolomics to determine plasma concentrations of AA and AA-related molecules in 36 children aged 7-12 years with normal weight or overweight. Clinical and anthropometric parameters were measured. (3) Results: Overweight in children is associated with an altered AA profile, with increased branched-chain amino acids (BCAA) and decreased glycine levels, with no clinically manifested metabolic conditions. Moreover, z-BMI was positively and negatively correlated with BCAA and glycine levels, respectively, even after adjustment for age and gender. We also found a correlation between the AA profile and clinical parameters such as lipids profile and glycemia. (4) Conclusions: A pattern of low glycine, and increased BCAA is correlated to z-BMI, total cholesterol, and triglycerides in overweight but otherwise healthy children. Our data suggest that, in childhood overweight, AA disturbances may precede other clinical parameters, thus providing an early indicator for the later development of metabolic disease.


Assuntos
Aminoácidos de Cadeia Ramificada , Aminoácidos , Glicina , Sobrepeso , Obesidade Infantil , Humanos , Criança , Feminino , Masculino , Glicina/sangue , Aminoácidos de Cadeia Ramificada/sangue , Aminoácidos/sangue , Sobrepeso/sangue , Obesidade Infantil/sangue , Índice de Massa Corporal , Espectrometria de Massas em Tandem , Cromatografia Líquida , Metabolômica/métodos , Triglicerídeos/sangue
9.
Prog Neurobiol ; 237: 102616, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723884

RESUMO

Alterations in cognitive and non-cognitive cerebral functions characterize Alzheimer's disease (AD). Cortical and hippocampal impairments related to extracellular accumulation of Aß in AD animal models have been extensively investigated. However, recent reports have also implicated intracellular Aß in limbic regions, such as the nucleus accumbens (nAc). Accumbal neurons express high levels of inhibitory glycine receptors (GlyRs) that are allosterically modulated by ethanol and have a role in controlling its intake. In the present study, we investigated how GlyRs in the 2xTg mice (AD model) affect nAc functions and ethanol intake behavior. Using transgenic and control aged-matched litter mates, we found that the GlyRα2 subunit was significantly decreased in AD mice (6-month-old). We also examined intracellular calcium dynamics using the fluorescent calcium protein reporter GCaMP in slice photometry. We also found that the calcium signal mediated by GlyRs, but not GABAAR, was also reduced in AD neurons. Additionally, ethanol potentiation was significantly decreased in accumbal neurons in the AD mice. Finally, we performed drinking in the dark (DID) experiments and found that 2xTg mice consumed less ethanol on the last day of DID, in agreement with a lower blood ethanol concentration. 2xTg mice also showed lower sucrose consumption, indicating that overall food reward was altered. In conclusion, the data support the role of GlyRs in nAc neuron excitability and a decreased glycinergic activity in the 2xTg mice that might lead to impairment in reward processing at an early stage of the disease.


Assuntos
Doença de Alzheimer , Núcleo Accumbens , Receptores de Glicina , Camundongos , Doença de Alzheimer/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Glicina/metabolismo , Camundongos Endogâmicos C57BL , Etanol , Camundongos Transgênicos , Cálcio/metabolismo , Recompensa , Sacarose/metabolismo , Atividade Motora , Ansiedade , Neurônios/metabolismo
10.
J Agric Food Chem ; 72(21): 12281-12294, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38747520

RESUMO

This study investigated the effect of AgNPs and AgNO3, at concentrations equivalent, on the production of primary and secondary metabolites on transgenic soybean plants through an NMR-based metabolomics. The plants were cultivated in a germination chamber following three different treatments: T0 (addition of water), T1 (addition of AgNPs), and T2 (addition of AgNO3). Physiological characteristics, anatomical analyses through microscopic structures, and metabolic profile studies were carried out to establish the effect of abiotic stress on these parameters in soybean plants. Analysis of the 1H NMR spectra revealed the presence of amino acids, organic acids, sugars, and polyphenols. The metabolic profiles of plants with AgNP and AgNO3 were qualitatively similar to the metabolic profile of the control group, suggesting that the application of silver does not affect secondary metabolites. From the PCA, it was possible to differentiate the three treatments applied, mainly based on the content of fatty acids, pinitol, choline, and betaine.


Assuntos
Glycine max , Espectroscopia de Ressonância Magnética , Metabolômica , Nanopartículas Metálicas , Plantas Geneticamente Modificadas , Prata , Glycine max/metabolismo , Glycine max/genética , Glycine max/química , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Prata/metabolismo , Prata/química , Nanopartículas Metálicas/química , Espectroscopia de Ressonância Magnética/métodos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/química , Aminoácidos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/química
11.
Life Sci ; 348: 122673, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38679193

RESUMO

AIMS: Glycine receptors (GlyRs) are potentiated by physiologically relevant concentrations of ethanol, and mutations in the intracellular loop of α1 and α2 subunits reduced the effect of the drug. Knock-in (KI) mice having these individual mutations revealed that α1 and α2 subunits played a role in ethanol-induced sedation and ethanol intake. In this study, we wanted to examine if the effects of stacking both mutations in a 2xKI mouse model (α1/α2) generated by a selective breeding strategy further impacted cellular and behavioral responses to ethanol. MAIN METHODS: We used electrophysiological recordings to examine ethanol's effect on GlyRs and evaluated ethanol-induced neuronal activation using c-Fos immunoreactivity and the genetically encoded calcium indicator GCaMP6s in the nucleus accumbens (nAc). We also examined ethanol-induced behavior using open field, loss of the righting response, and drinking in the dark (DID) paradigm. KEY FINDINGS: Ethanol did not potentiate GlyRs nor affect neuronal excitability in the nAc from 2xKI. Moreover, ethanol decreased the Ca2+ signal in WT mice, whereas there were no changes in the signal in 2xKI mice. Interestingly, there was an increase in c-Fos baseline in the 2xKI mice in the absence of ethanol. Behavioral assays showed that 2xKI mice recovered faster from a sedative dose of ethanol and had higher ethanol intake on the first test day of the DID test than WT mice. Interestingly, an open-field assay showed that 2xKI mice displayed less anxiety-like behavior than WT mice. SIGNIFICANCE: The results indicate that α1 and α2 subunits are biologically relevant targets for regulating sedative effects and ethanol consumption.


Assuntos
Etanol , Técnicas de Introdução de Genes , Receptores de Glicina , Animais , Etanol/farmacologia , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Camundongos , Masculino , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos Transgênicos , Receptores de GABA-A
12.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542362

RESUMO

Indole alkaloids are the main bioactive molecules of the Gelsemium genus plants. Diverse reports have shown the beneficial actions of Gelsemium alkaloids on the pathological states of the central nervous system (CNS). Nevertheless, Gelsemium alkaloids are toxic for mammals. To date, the molecular targets underlying the biological actions of Gelsemium alkaloids at the CNS remain poorly defined. Functional studies have determined that gelsemine is a modulator of glycine receptors (GlyRs) and GABAA receptors (GABAARs), which are ligand-gated ion channels of the CNS. The molecular and physicochemical determinants involved in the interactions between Gelsemium alkaloids and these channels are still undefined. We used electrophysiological recordings and bioinformatic approaches to determine the pharmacological profile and the molecular interactions between koumine, gelsemine, gelsevirine, and humantenmine and these ion channels. GlyRs composed of α1 subunits were inhibited by koumine and gelsevirine (IC50 of 31.5 ± 1.7 and 40.6 ± 8.2 µM, respectively), while humantenmine did not display any detectable activity. The examination of GlyRs composed of α2 and α3 subunits showed similar results. Likewise, GABAARs were inhibited by koumine and were insensitive to humantenmine. Further assays with chimeric and mutated GlyRs showed that the extracellular domain and residues within the orthosteric site were critical for the alkaloid effects, while the pharmacophore modeling revealed the physicochemical features of the alkaloids for the functional modulation. Our study provides novel information about the molecular determinants and functional actions of four major Gelsemium indole alkaloids on inhibitory receptors, expanding our knowledge regarding the interaction of these types of compounds with protein targets of the CNS.


Assuntos
Alcaloides , Gelsemium , Animais , Gelsemium/química , Alcaloides/química , Extratos Vegetais/química , Alcaloides Indólicos/química , Ácido gama-Aminobutírico , Mamíferos/metabolismo
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124113, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447444

RESUMO

Traditional monitoring of asian soybean rust severity is a time- and labor-intensive task, as it requires visual assessments by skilled professionals in the field. Thus, the use of remote sensing and machine learning (ML) techniques in data processing has emerged as an approach that can increase efficiency in disease monitoring, enabling faster, more accurate and time- and labor-saving evaluations. The aims of the study were: (i) to identify the spectral signature of different levels of Asian soybean rust severity; (ii) to identify the most accurate machine learning algorithm for classifying disease severity levels; (iii) which spectral input provides the highest classification accuracy for the algorithms; (iv) to determine a sample size of leaves that guarantees the best accuracy for the algorithms. A field experiment was carried out in the 2022/2023 harvest in a randomized block design with a 6x3 factorial scheme (ML algorithms x severity levels) and four replications. Disease severity levels assessed were: healthy leaves, 25 % severity, and 50 % severity. Leaf hyperspectral analysis was carried out over a wide range from 350 to 2500 nm. From this analysis, 28 spectral bands were extracted, seeking to distinguish the spectral signature for each severity level with the least input dataset. Data was subjected to machine learning analysis using Artificial Neural Network (ANN), REPTree (DT) and J48 decision trees, Random Forest (RF), and Support Vector Machine (SVM) algorithms, as well as a traditional classification method (Logistic Regression - LR). Two different input datasets were tested for each algorithm: the full spectrum (ALL) provided by the sensor and the 28 spectral bands (SB). Tests with different sample sizes were also conducted to investigate the algorithms' ability to detect severity levels with a reduced sample size. Our findings indicate differences between the spectral curves for the severity levels assessed, which makes it possible to differentiate between healthy plants with low and high severity using hyperspectral sensing. SVM was the most accurate algorithm for classifying severity levels by using all the spectral information as input. This algorithm also provided high classification accuracy when using smaller leaf samples. This study reveals that hyperspectral sensing and the use of ML algorithms provide an accurate classification of different levels of Asian rust severity, and can be powerful tools for a more efficient disease monitoring process.


Assuntos
Basidiomycota , Glycine max , Algoritmos , Aprendizado de Máquina , Redes Neurais de Computação , Máquina de Vetores de Suporte
14.
Sci Total Environ ; 918: 170387, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38280604

RESUMO

Glyphosate hormesis, identified as a potential means to enhance crop yields, encounters practical constraints because it is typically assessed through foliar applications. The expression and extend of hormesis in this approach are influenced by unpredictable environmental conditions, highlighting the need to explore alternative glyphosate application methods, such as seed treatment. This study aimed to assess glyphosate hormesis on growth rates and biomass accumulation in seedlings soybean cultivars. Two dose-response experiments [doses from 0 to 2880 g acid equivalent (ae) ha-1], one via foliar and one via seed, were conducted on three soybean cultivars [one non-glyphosate-resistant (NGR) and two glyphosate-resistant (GR, one RR and one RR2)]. In a subsequent experiment, three safe glyphosate doses (0, 90 and 180 g ae ha-1) applied via seed were evaluated on four soybean cultivars (two RR and two RR2). For foliar applications, the range of glyphosate doses increasing growth rates and dry biomass by 12-28 % were 5.6-45 g ae ha-1 for the NGR cultivar, of 45-720 g ae ha-1 for RR and of 11.25-180 g ae ha-1 for RR2. In the seed treatment, biomass increases of 16-60 % occurred at 45-180 g ae ha-1 for the NGR and RR cultivars, and 90-360 g ae ha-1 for RR2. Glyphosate doses of 90 and 180 g ae ha-1, applied via seeds, provided greater growth and biomass accumulation for the RR and RR2 soybean cultivars. Both foliar and seed applications of glyphosate increased growth and biomass accumulation in soybean cultivars, with seed treatments showing greater and more consistent enhancements. These findings propose practical and viable alternative for harnessing glyphosate hormesis to facilitate the early development of soybeans and potentially enhance crop yield.


Assuntos
Glifosato , Herbicidas , Glycine max , Plântula , Glicina/toxicidade , Hormese , Herbicidas/toxicidade , Biomassa , Sementes
15.
Neotrop Entomol ; 53(2): 415-423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38270781

RESUMO

Bt soybean cultivation is increasing worldwide. The Cry1Ac protein expressed in Bt soybean efficiently controls several lepidopteran pests. The stink bug, Piezodorus guildinii (Westwood), a major pest for soybean in the Americas, is not controlled by Bt crops, although possible sub-lethal effects may occur. Even if there were no negative effects for sting bug, ingesting toxins could affect its bio-controllers. We tested through ELISA detection if P. guildinii ingests Cry1Ac from Bt soybean and possible effects on its development, reproduction, survival, and feeding behavior. Biological traits were evaluated under controlled conditions of nymphs and adults feeding on pods of near-isogenic cultivars DM5958iPRO (Bt) and DM59i (non-Bt). Feeding behavior was recorded using an AC-DC electropenetrography (EPG) device. Results indicated that P. guildinii ingested the Cry1Ac protein; however, nymphal period and accumulated survival percentage did not differ between cultivars. Feeding on Bt soybean pods did not affect fecundity (i.e., number of egg masses and eggs/female) nor egg viability. Different feeding behaviors were only detected on the pathway phase (stylet penetration into plant tissue), which was more pronounced in the Bt cultivar. However, the total duration of the feeding activities on seeds was numerically higher (ca. 2X) on Bt plants compared to non-Bt. This is the first study to demonstrate that P. guildinii does ingest the Cry1Ac protein and excrete it without being absorbed, probably explaining the lack of direct adverse effects on its biological parameters. EPG could indicate that Bt soybean plants might be less palatable than non-Bt to red-banded stink bug.


Assuntos
Glycine max , Heterópteros , Animais , Comportamento Alimentar , Reprodução , Sementes , Ninfa
16.
Sci Total Environ ; 912: 168626, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38013096

RESUMO

Plant development and productivity depend on interactions with soil microorganisms for nutrient availability, promotion of growth and protection against phytopathogens. Although the influence of the phenological stages of soybean crops and their environmental conditions on the soil bacterial communities have already been reported, no studies have focused on the influence of integrated agrosilvopastoral systems on bacterial consortia. In this study, we evaluated the influence of the phenological stages of soybean cultivated under conventional full sunlight (CFS) and integrated crop-livestock-forestry (ICLF) systems on bacterial communities in the rhizosphere and in bulk soil using high-throughput sequencing techniques. Proteobacteria, Actinobacteriota and Acidobacteriota were the most abundant phyla in both the rhizosphere and the bulk soil at all growth stages. The results support our hypotheses that the richness and diversity of soil bacterial communities are influenced by different cultivation systems, and that the structure of the bacterial communities in the rhizosphere and the bulk soil are modulated by the phenological stages of the soybean crop.


Assuntos
Glycine max , Microbiologia do Solo , Bactérias , Rizosfera , Solo/química
17.
Neurochem Res ; 49(3): 684-691, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38017313

RESUMO

In the spinal cord, attenuation of the inhibitory action of glycine is related to an increase in both inflammatory and diabetic neuropathic pain; however, the glycine receptor involvement in diabetic neuropathy has not been reported. We determined the expression of the glycine receptor subunits (α1-α3 and ß) in streptozotocin-induced diabetic Long-Evans rats by qPCR and Western blot. The total mRNA and protein expression (whole spinal cord homogenate) of the α1, α3, and ß subunits did not change during diabetes; however, the α2 subunit mRNA, but not the protein, was overexpressed 45 days after diabetes induction. By contrast, the synaptic expression of the α1 and α2 subunits decreased in all the studied stages of diabetes, but that of the α3 subunit increased on day 45 after diabetes induction. Intradermal capsaicin produced higher paw-licking behavior in the streptozotocin-induced diabetic rats than in the control animals. In addition, the nocifensive response was higher at 45 days than at 20 days. During diabetes, the expression of the glycine receptor was altered in the spinal cord, which strongly suggests its involvement in diabetic neuropathy.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Ratos , Animais , Glicina/metabolismo , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Estreptozocina/toxicidade , Neuropatias Diabéticas/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Ratos Long-Evans , Medula Espinal/metabolismo , RNA Mensageiro/metabolismo
18.
Ciênc. rural (Online) ; 54(2): e20220474, 2024. tab, graf, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1505982

RESUMO

The use of plant resistance acts by intervening in the herbivore-host relationship, through morphological, physical or chemical factors of the plant. This study evaluated the oviposition and foliar consumption of Chrysodeixis includens (Walker [1858]) in soybean genotypes, in free- and no-choice tests, correlating them with the factors, density and size of trichomes. The experiments were carried out in laboratory (25 ± 2 °C; RH= 70 ± 10%; photoperiod 14h) using five cultivars (BRS 391, BRS 6203 RR, BMX Valente RR, Tec Irga 6070 RR, BMX Icone Ipro) and two isolines (PELBR 10-6000 and PELBR 10-6049). The trichomes reported were filiform tectors and claviform multicellular glandular. The density of glandular trichomes, in stages V2 and V5, was higher on BRS 6203 RR and BRS 391, respectively. The higher density of glandular trichomes was observed in V5 and a higher density of tector trichomes in V2. The lowest densities and the smallest sizes of trichomes in V2 and V5 stages was observed on PELBR 10-6049. The size of tector trichomes and the number of eggs did not differ among the cultivars. Foliar consumption was lower for on BMX Icone Ipro and Tec Irga 6070 RR. Trichome density influences the consumption and oviposition behavior of C. includens.


O uso da resistência de plantas atua intervindo na relação herbívoro-hospedeiro, através de fatores morfológicos, físicos ou químicos da planta. O objetivo deste trabalho foi avaliar a oviposição e o consumo foliar de Chrysodeixis includens (Walker [1858]) em genótipos de soja, através de testes com e sem escolha, correlacionando-os com os fatores, densidade e tamanho de tricomas. Os experimentos foram realizados em laboratório (25 ± 2 °C; UR= 70 ± 10%; fotoperíodo 14h) utilizando cinco cultivares (BRS 391, BRS 6203 RR, BMX Valente RR, Tec Irga 6070 RR, BMX Icone Ipro) e duas linhagens (PELBR 10-6000 e PELBR 10-6049). Os tricomas encontrados foram tectores filiformes e glandulares multicelulares claviformes. A densidade de tricomas glandulares nos estágios V2 e V5, foi maior em BRS 6203 RR e BRS 391, respectivamente. A maior densidade de tricomas glandulares foi observada em V5 e a maior densidade de tricomas tectores em V2. As menores densidades e os menores tamanhos de tricomas nos estágios V2 e V5 foram observados em PELBR 10-6049. O tamanho de tricomas tectores e o número de ovos não diferiram entre as cultivares. O consumo foliar foi menor para BMX Icone Ipro e Tec Irga 6070 RR. A densidade de tricomas influência o comportamento de consumo e oviposição de C. includens.


Assuntos
Oviposição , Glycine max , Genótipo , Lepidópteros/fisiologia
19.
Diagnostics (Basel) ; 13(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38066746

RESUMO

Clear cell renal cell carcinoma (KIRC) is the most common subtype of renal cell carcinoma (RCC). This form of cancer is characterized by resistance to traditional therapies and an increased likelihood of metastasis. A major factor contributing to the pathogenesis of KIRC is the alteration of metabolic pathways. As kidney cancer is increasingly considered a metabolic disease, there is a growing need to understand the enzymes involved in the regulation of metabolism in tumorigenic cells. In this context, our research focused on glycine N-acyltransferase (GLYAT), an enzyme known to play a role in various metabolic diseases and cancer. Here, through a bioinformatic analysis of public databases, we performed a characterization of GLYAT expression levels in KIRC cases. Our goal is to evaluate whether GLYAT could serve as a compelling candidate for an in-depth study, given its pivotal role in metabolic regulation and previously established links to other malignancies. The analysis showed a marked decrease in GLYAT expression in all stages and grades of KIRC, regardless of mutation rates, suggesting an alternative mechanism of regulation along the tumor development. Additionally, we observed a hypomethylation in the GLYAT promoter region and a negative correlation between the expression of the GLYAT and the levels of cancer-associated fibroblasts. Finally, the data show a correlation between higher levels of GLYAT expression and better patient prognosis. In conclusion, this article underscores the potential of GLYAT as a diagnostic and prognostic marker in KIRC.

20.
Plant Dis ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085963

RESUMO

Soybean (Glycine max L.) is produced in over 70,000 ha in the Altillanura Region, eastern Colombia (Agronet 2023). From 2018 to 2020, foliar symptoms like green stem and foliar retention of soybean, which in Brazil can cause up to 100% soybean yield losses (Meyer et al. 2017), were observed in soybean fields in Colombia. During 2020, samples from symptomatic plants in reproductive stages (R1-R8) were collected from different commercial soybean fields in the Altillanura Region. Over 200 samples were processed, using an incubation method described in Coyne et al. (2014). Nematodes were recovered from photosynthetic leaf tissues and enlarged nodes/buds with population densities ranging from 13 to 132 and 36 to 936 nematodes/10g, respectively. Adult females were morphologically and molecularly characterized as Aphelenchoides pseudobesseyi (Oliveira et al. 2019; Subbotin et al. 2020). Female body length (n = 20) ranged from 653.3 to 806.3 µm (mean = 723 µm ± 52.7), stylet length from 11.0 to 12.3 µm (11.8 µm ± 0.3), body diameter from 14.8 to 17.9 µm (16.3 µm ± 1.1), post-uterine sac length from 38.7 to 51.9 µm (44.6 µm ± 5.1), vulva to anus from 145.5 to 223.2 µm (172.2 µm ± 22.4), and 26% of the vulva-anus distance. Genomic DNA was extracted (QIAGEN DNeasy® Blood & Tissue kit) from a pool of nematodes. The D2A/D3B (Tenente et al. 2004) primers were used to amplify and sequence the D2/D3 expansion region of the 28S rRNA gene. PCR product (~759 bp) was purified, sequenced, deposited in GenBank (OQ930285), and compared to previously deposited sequences (e.g., KX356756, KY510840, KY510839, KY510841, KT692694, KY510842, MH187565) by means of the BLAST algorithm. Similarly, 988F and 18SR-Burs (De Jesus et al. 2016) primers were used to amplify and sequence the near full-length 18S RNA gene (SSU). PCR product was purified, sequenced, deposited in GenBank (OQ954344), and compared to previously deposited sequences (e.g., KT454962, KT943534, KT943535, KY510835, KY510836, KY510837, KY510838, MH187565). Phylogenetic Bayesian analysis (Ronquist et al. 2012) of the of the D2/D3 and 18S regions placed this nematode from Colombia in the A. pseudobesseyi clade (PP = 100). To fulfill a modified Koch's postulates, the A. pseudobesseyi population described above was used in a greenhouse assay. In total, 120 soybean plants (cv. Flor Blanca) were infected with 200 A. pseudobesseyi (females + males)/plant. Briefly, at cotyledon stage (VC), 50 µl aliquot containing 50 A. pseudobesseyi was delivered onto each cotyledon and unifoliolate leaves (200 nematodes/plant). Sterile water was delivered to 80 plants which served as control. Plants were kept in the greenhouse at approximately 25°C and covered with clear plastic bag for 72 h to maintain over 90% relative humidity. After 15, 30, 45, and 60 days, soybean plants (n = 20) were processed, A. pseudobesseyi quantified, and the average reproduction factor (final population/initial population) was 0.1, 2.9, 14.0, and 1.8, respectively. Infected plants showed symptoms of blistering leaves with malformation (midrib vein twist), and A. pseudobesseyi was not observed in control plants. To our knowledge, this is the first report of A. pseudobesseyi parasitizing soybean buds and leaves in Colombia. Soybean is an important commodity for the Altillanura Region, and it is important to monitor the risk posed by this nematode. Furthermore, a better understanding of the nematode-host interaction and epidemiology in Colombia soybean producing regions is needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA