Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 106(13-16): 5035-5049, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35799069

RESUMO

Valorization of the hemicellulose fraction of plant biomass is crucial for the sustainability of lignocellulosic biorefineries. The Cellulomonas genus comprises Gram-positive Actinobacteria that degrade cellulose and other polysaccharides by secreting a complex array of enzymes. In this work, we studied the specificity and synergy of two enzymes, CsXyn10A and CsAbf62A, which were identified as highly abundant in the extracellular proteome of Cellulomonas sp. B6 when grown on wheat bran. To explore their potential for bioprocessing, the recombinant enzymes were expressed and their activities were thoroughly characterized. rCsXyn10A is a GH10 endo-xylanase (EC 3.2.1.8), active across a broad pH range (5 to 9), at temperatures up to 55 °C. rCsAbf62A is an α-L-arabinofuranosidase (ABF) (EC 3.2.1.55) that specifically removes α-1,2 and α-1,3-L-arabinosyl substituents from arabino-xylo-oligosaccharides (AXOS), xylan, and arabinan backbones, but it cannot act on double-substituted residues. It also has activity on pNPA. No differences were observed regarding activity when CsAbf62A was expressed with its appended CBM13 module or only the catalytic domain. The amount of xylobiose released from either wheat arabinoxylan or arabino-xylo-oligosaccharides increased significantly when rCsXyn10A was supplemented with rCsAbf62A, indicating that the removal of arabinosyl residues by rCsAbf62A improved rCsXyn10A accessibility to ß-1,4-xylose linkages, but no synergism was observed in the deconstruction of wheat bran. These results contribute to designing tailor-made, substrate-specific, enzymatic cocktails for xylan valorization. KEY POINTS: • rCsAbf62A removes α-1,2 and α-1,3-L-arabinosyl substituents from arabino-xylo-oligosaccharides, xylan, and arabinan backbones. • The appended CBM13 of rCsAbf62A did not affect the specific activity of the enzyme. • Supplementation of rCsXyn10A with rCsAbf62A improves the degradation of AXOS and xylan.


Assuntos
Cellulomonas , Xilanos , Cellulomonas/genética , Cellulomonas/metabolismo , Fibras na Dieta , Endo-1,4-beta-Xilanases/metabolismo , Glicosídeo Hidrolases/metabolismo , Hidrólise , Oligossacarídeos/metabolismo , Especificidade por Substrato , Xilanos/metabolismo
2.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35216436

RESUMO

Endoxylanases belonging to family 10 of the glycoside hydrolases (GH10) are versatile in the use of different substrates. Thus, an understanding of the molecular mechanisms underlying substrate specificities could be very useful in the engineering of GH10 endoxylanases for biotechnological purposes. Herein, we analyzed XynA, an endoxylanase that contains a (ß/α)8-barrel domain and an intrinsically disordered region (IDR) of 29 amino acids at its amino end. Enzyme activity assays revealed that the elimination of the IDR resulted in a mutant enzyme (XynAΔ29) in which two new activities emerged: the ability to release xylose from xylan, and the ability to hydrolyze p-nitrophenyl-ß-d-xylopyranoside (pNPXyl), a substrate that wild-type enzyme cannot hydrolyze. Circular dichroism and tryptophan fluorescence quenching by acrylamide showed changes in secondary structure and increased flexibility of XynAΔ29. Molecular dynamics simulations revealed that the emergence of the pNPXyl-hydrolyzing activity correlated with a dynamic behavior not previously observed in GH10 endoxylanases: a hinge-bending motion of two symmetric regions within the (ß/α)8-barrel domain, whose hinge point is the active cleft. The hinge-bending motion is more intense in XynAΔ29 than in XynA and promotes the formation of a wider active site that allows the accommodation and hydrolysis of pNPXyl. Our results open new avenues for the study of the relationship between IDRs, dynamics and activity of endoxylanases, and other enzymes containing (ß/α)8-barrel domain.


Assuntos
Endo-1,4-beta-Xilanases/metabolismo , Glicosídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Catálise , Domínio Catalítico/fisiologia , Hidrólise , Especificidade por Substrato/fisiologia , Xilanos/metabolismo , Xilose/metabolismo
3.
Carbohydr Polym ; 275: 118684, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742414

RESUMO

Bioconversion of lignocellulosic biomass into value-added products relies on polysaccharides depolymerization by carbohydrate active enzymes. This work reports biochemical characterization of Paludibacter propionicigenes xylanase from GH10 (PpXyn10A) and its application for enzymatic xylooligosaccharides (XOS) production from commercial heteroxylans and liquor of hydrothermally pretreated corn cobs (PCC). PpXyn10A is tolerant to ethanol and NaCl, and releases xylobiose (X2) and xylotriose (X3) as the main hydrolytic products. The conversion rate of complex substrates into short XOS was approximately 30% for glucuronoxylan and 8.8% for rye arabinoxylan, after only 4 h; while for PCC, PpXyn10A greatly increased unbranched XOS yields. B. adolescentis fermentation with XOS from beechwood glucuronoxylan produced mainly acetic and lactic acids. Structural analysis shows that while the glycone region of PpXyn10A active site is well preserved, the aglycone region has aromatic interactions in the +2 subsite that may explain why PpXyn10A does not release xylose.


Assuntos
Bacteroidetes , Endo-1,4-beta-Xilanases/metabolismo , Glucuronatos/química , Oligossacarídeos/química , Xilanos/química , Animais , Bifidobacterium adolescentis/efeitos dos fármacos , Dissacarídeos/química , Fermentação , Glucuronatos/farmacologia , Humanos , Hidrólise , Oligossacarídeos/farmacologia , Prebióticos , Trissacarídeos/química , Xilose/química , Zea mays/química
4.
Bioresour Bioprocess ; 9(1): 84, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-38647897

RESUMO

The aim of the present study was to assess the biochemical and molecular structural characteristics of a novel alkali-thermostable GH10 xylanase (Xyl10B) identified in a termite gut microbiome by a shotgun metagenomic approach. This endoxylanase candidate was amplified, cloned, heterologously expressed in Escherichia coli and purified. The recombinant enzyme was active at a broad range of temperatures (37-60 ºC) and pH values (4-10), with optimal activity at 50 ºC and pH 9. Moreover, its activity remained at more than 80% of its maximum at 50 °C for 8 h. In addition, Xyl10B was found to be stable in the presence of salt and several ions and chemical reagents frequently used in the industry. These characteristics make this enzyme an interesting candidate for pulp and paper bleaching industries, since this process requires enzymes without cellulase activity and resistant to high temperatures and alkaline pH (thermo-alkaliphilic enzymes). The products of xylan hydrolysis by Xyl10B (short xylooligosaccharides, xylose and xylobiose) could be suitable for application as prebiotics and in the production of bioethanol.

5.
Appl Microbiol Biotechnol ; 105(18): 6759-6778, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34458936

RESUMO

The genus Cohnella belongs to a group of Gram-positive endospore-forming bacteria within the Paenibacillaceae family. Although most species were described as xylanolytic bacteria, the literature still lacks some key information regarding their repertoire of xylan-degrading enzymes. The whole genome sequence of an isolated xylan-degrading bacterium Cohnella sp. strain AR92 was found to contain five genes encoding putative endo-1,4-ß-xylanases, of which four were cloned, expressed, and characterized to better understand the contribution of the individual endo-xylanases to the overall xylanolytic properties of strain AR92. Three of the enzymes, CoXyn10A, CoXyn10C, and CoXyn11A, were shown to be effective at hydrolyzing xylans-derived from agro-industrial, producing oligosaccharides with substrate conversion values of 32.5%, 24.7%, and 10.6%, respectively, using sugarcane bagasse glucuronoarabinoxylan and of 29.9%, 19.1%, and 8.0%, respectively, using wheat bran-derived arabinoxylan. The main reaction products from GH10 enzymes were xylobiose and xylotriose, whereas CoXyn11A produced mostly xylooligosaccharides (XOS) with 2 to 5 units of xylose, often substituted, resulting in potentially prebiotic arabinoxylooligosaccharides (AXOS). The endo-xylanases assay displayed operational features (temperature optima from 49.9 to 50.4 °C and pH optima from 6.01 to 6.31) fitting simultaneous xylan utilization. Homology modeling confirmed the typical folds of the GH10 and GH11 enzymes, substrate docking studies allowed the prediction of subsites (- 2 to + 1 in GH10 and - 3 to + 1 in GH11) and identification of residues involved in ligand interactions, supporting the experimental data. Overall, the Cohnella sp. AR92 endo-xylanases presented significant potential for enzymatic conversion of agro-industrial by-products into high-value products.Key points• Cohnella sp. AR92 genome encoded five potential endo-xylanases.• Cohnella sp. AR92 enzymes produced xylooligosaccharides from xylan, with high yields.• GH10 enzymes from Cohnella sp. AR92 are responsible for the production of X2 and X3 oligosaccharides.• GH11 from Cohnella sp. AR92 contributes to the overall xylan degradation by producing substituted oligosaccharides.


Assuntos
Bacillales , Saccharum , Endo-1,4-beta-Xilanases/genética , Hidrólise , Oligossacarídeos , Xilanos
6.
J Appl Microbiol ; 126(3): 811-825, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30554465

RESUMO

AIMS: Lignocellulosic biomass deconstruction is a bottleneck for obtaining biofuels and value-added products. Our main goal was to characterize the secretome of a novel isolate, Cellulomonas sp. B6, when grown on residual biomass for the formulation of cost-efficient enzymatic cocktails. METHODS AND RESULTS: We identified 205 potential CAZymes in the genome of Cellulomonas sp. B6, 91 of which were glycoside hydrolases (GH). By secretome analysis of supernatants from cultures in either extruded wheat straw (EWS), grinded sugar cane straw (SCR) or carboxymethylcellulose (CMC), we identified which proteins played a role in lignocellulose deconstruction. Growth on CMC resulted in the secretion of two exoglucanases (GH6 and GH48) and two GH10 xylanases, while growth on SCR or EWS resulted in the identification of a diversity of CAZymes. From the 32 GHs predicted to be secreted, 22 were identified in supernatants from EWS and/or SCR cultures, including endo- and exoglucanases, xylanases, a xyloglucanase, an arabinofuranosidase/ß-xylosidase, a ß-glucosidase and an AA10. Surprisingly, among the xylanases, seven were GH10. CONCLUSIONS: Growth of Cellulomonas sp. B6 on lignocellulosic biomass induced the secretion of a diverse repertoire of CAZymes. SIGNIFICANCE AND IMPACT OF THE STUDY: Cellulomonas sp. B6 could serve as a source of lignocellulose-degrading enzymes applicable to bioprocessing and biotechnological industries.


Assuntos
Proteínas de Bactérias/metabolismo , Cellulomonas , Lignina/metabolismo , Metaboloma/fisiologia , Biomassa , Cellulomonas/química , Cellulomonas/enzimologia , Cellulomonas/metabolismo , Cellulomonas/fisiologia
7.
Int J Biol Macromol ; 109: 560-568, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29274424

RESUMO

Environmental issues are promoting the development of innovative technologies for the production of renewable energy and "green products" from plant biomass residues. These technologies rely on the conversion of the plant cell wall (PCW) polysaccharides into simple sugars, which involve synergistic activities of different PCW degrading enzymes, including xylanases; these are widely applied in food and feed sectors, paper and textile industries, among others. We cloned, expressed and biochemically characterized a novel xylanase (Xyn10) from the GH10 identified in a metatranscriptome of compost-derived microbial consortia and determined its low-resolution SAXS molecular envelope in solution. Our results reveal that Xyn10 is a monomeric flexible globular enzyme, with high stability with a broad pH range from 4 to 10 and optimal activity conditions at pH 7 and 40 °C. Only 10% of activity loss was observed after the enzyme was incubated for 30 h at 40 °C with a pH ranging from 5 to 10. Moreover, Xyn10 maintained 100% of its initial activity after incubation for 120 h at 40 °C and 51% after incubation for 24 h at 50 °C (pH = 7.0). Xyn10 shows endocatalytic activity towards xylan and arabinoxylan, liberating xylose, xylobiose, 1,2-α-d-methylglucuronic acid decorated xylotriose, and 1,3-α-l-arabinofuranose decorated xylobiose and xylotriose oligosaccharides.


Assuntos
Celulose/metabolismo , Compostagem , Endo-1,4-beta-Xilanases/metabolismo , Microbiologia , Saccharum/química , Soluções Tampão , Clonagem Molecular , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/genética , Modelos Moleculares , Estrutura Secundária de Proteína
8.
Microbiol Res ; 186-187: 16-26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242139

RESUMO

A novel bacterial isolate with polysaccharides degrading activity was identified as Paenibacillus sp., and named Paenibacillus sp. A59. Even though it is a strict mesophile, optimal xylanase activity of the crude enzymatic extract was achieved between 50°C and 70°C and more than 60% of the activity was retained after incubation for 48h at 50°C, indicating thermotolerance of the enzymes involved. The extract was also active on pre-treated sugarcane residue (SCR) and wheat straw, releasing xylobiose and xylose as the main products, therefore confirming its predominantly xylanolytic activity. By zymograms and mass spectrometry of crude enzymatic extracts of xylan or SCR cultures, a 32kDa GH10 beta- 1,4- endoxylanase with xylanase and no CMCase activity was identified. We named this enzyme XynA and it was the only xylanase identified under both conditions assayed, suggesting that it is a good candidate for recombinant expression and evaluation in hemicelluloses deconstruction applications. Also, a protein with two S-layer homology domains (SLH) and a large uncharacterized C-terminal domain as well as an ABC substrate binding protein were identified in crude extracts of SCR cultures. We propose that Paenibacillus sp. A59 uses a system similar to anaerobic and other Gram positive bacteria, with SLH-domain proteins anchoring polysaccharide-degrading enzymes close to the membrane and the substrate binding protein assisting translocation of simple sugars to the cell interior.


Assuntos
Endo-1,4-beta-Xilanases/análise , Lignina/metabolismo , Paenibacillus/enzimologia , Paenibacillus/crescimento & desenvolvimento , Xilanos/metabolismo , Dissacarídeos/metabolismo , Eletroforese , Endo-1,4-beta-Xilanases/química , Espectrometria de Massas , Peso Molecular , Caules de Planta/metabolismo , Saccharum/metabolismo , Temperatura , Triticum/metabolismo , Xilose/metabolismo
9.
J Biol Chem ; 289(46): 32186-32200, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25266726

RESUMO

Xanthomonas pathogens attack a variety of economically relevant plants, and their xylan CUT system (carbohydrate utilization with TonB-dependent outer membrane transporter system) contains two major xylanase-related genes, xynA and xynB, which influence biofilm formation and virulence by molecular mechanisms that are still elusive. Herein, we demonstrated that XynA is a rare reducing end xylose-releasing exo-oligoxylanase and not an endo-ß-1,4-xylanase as predicted. Structural analysis revealed that an insertion in the ß7-α7 loop induces dimerization and promotes a physical barrier at the +2 subsite conferring this unique mode of action within the GH10 family. A single mutation that impaired dimerization became XynA active against xylan, and high endolytic activity was achieved when this loop was tailored to match a canonical sequence of endo-ß-1,4-xylanases, supporting our mechanistic model. On the other hand, the divergent XynB proved to be a classical endo-ß-1,4-xylanase, despite the low sequence similarity to characterized GH10 xylanases. Interestingly, this enzyme contains a calcium ion bound nearby to the glycone-binding region, which is required for catalytic activity and structural stability. These results shed light on the molecular basis for xylan degradation by Xanthomonas and suggest how these enzymes synergistically assist infection and pathogenesis. Our findings indicate that XynB contributes to breach the plant cell wall barrier, providing nutrients and facilitating the translocation of effector molecules, whereas the exo-oligoxylanase XynA possibly participates in the suppression of oligosaccharide-induced immune responses.


Assuntos
Proteínas de Bactérias/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Plantas/microbiologia , Xanthomonas/enzimologia , Xilanos/metabolismo , beta-Glucosidase/metabolismo , Sequência de Aminoácidos , Cálcio/metabolismo , Calorimetria , Metabolismo dos Carboidratos , Parede Celular/enzimologia , Clonagem Molecular , Cristalografia por Raios X , Glicosídeo Hidrolases/metabolismo , Íons , Dados de Sequência Molecular , Oligossacarídeos/metabolismo , Engenharia de Proteínas , Multimerização Proteica , Homologia de Sequência de Aminoácidos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA