Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Ann Hepatol ; 29(6): 101546, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39147130

RESUMO

Hepatocellular carcinoma (HCC) is one of the deadliest cancers. For patients with advanced HCC, liver function decompensation often occurs, which leads to poor tolerance to chemotherapies and other aggressive treatments. Therefore, it remains critical to develop effective therapeutic strategies for HCC. Etiological factors for HCC are complex and multifaceted, including hepatitis virus infection, alcohol, drug abuse, chronic metabolic abnormalities, and others. Thus, HCC has been categorized as a "genomically unstable" cancer due to the typical manifestation of chromosome breakage and aneuploidy, and oxidative DNA damage. In recent years, immunotherapy has provided a new option for cancer treatments, and the degree of genomic instability positively correlates with immunotherapy efficacies. This article reviews the endogenous and exogenous causes that affect the genomic stability of liver cells; it also updates the current biomarkers and their detection methods for genomic instabilities and relevant applications in cancer immunotherapies. Including genomic instability biomarkers in consideration of cancer treatment options shall increase the patients' well-being.

2.
J Assist Reprod Genet ; 41(9): 2279-2288, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38995507

RESUMO

PURPOSE: To analyze the copy number variation (CNV) in the X-linked genes BCORL1, POF1B, and USP9X in idiopathic diminished ovarian reserve (DOR). METHODS: This case-control study included 47 women, 26 with DOR and 21 in the control group. Age, weight, height, BMI, and FSH level were evaluated, as well as antral follicle count (AFC), oocyte retrieval after controlled ovarian stimulation, and metaphase II (MII) oocytes. The CNVs of BCORL1, USP9X, and POF1B genes were measured by quantitative real time PCR (qPCR) using two reference genes, the HPRT1 (X-linked) and MFN2 (autosomal). Protein-protein interaction network and functional enrichment analysis were performed using the STRING database. RESULTS: The mean age was 36.52 ± 4.75 in DOR women and 35.38 ± 4.14 in control. Anthropometric measures did not differ between the DOR and control groups. DOR women presented higher FSH (p = 0.0025) and lower AFC (p < .0001), oocyte retrieval after COS (p = 0.0004), and MII oocytes (p < .0001) when compared to the control group. BCORL1 and POF1B did not differ in copy number between DOR and control. However, DOR women had more copies of USP9X than the control group (p = 0.028). CONCLUSION: The increase in the number of copies of the USP9X gene may lead to overexpression in idiopathic DOR and contribute to altered folliculogenesis and oocyte retrieval.


Assuntos
Variações do Número de Cópias de DNA , Reserva Ovariana , Ubiquitina Tiolesterase , Humanos , Feminino , Reserva Ovariana/genética , Adulto , Variações do Número de Cópias de DNA/genética , Ubiquitina Tiolesterase/genética , Estudos de Casos e Controles , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/patologia , Recuperação de Oócitos , Proteínas Repressoras/genética , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Oócitos/patologia
3.
Parkinsonism Relat Disord ; 125: 107044, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917640

RESUMO

BACKGROUND: Growing evidence has shown that mitochondrial dysfunction is part of the pathogenesis of Parkinson's disease (PD). However, the role of mitochondrial DNA (mtDNA) variants on PD onset is unclear. OBJECTIVES: The present study aims to evaluate the effect of mtDNA variants and haplogroups on risk of developing PD. METHODS: Systematic review and meta-analysis of studies investigating associations between PD and mtDNA variants and haplogroups. RESULTS: A total of 33 studies were eligible from 957 screened studies. Among 13,640 people with PD and 22,588 control individuals, the association with PD was consistently explored in 13 mtDNA variants in 10 genes and 19 macrohaplogroups. Four mtDNA variants were associated with PD: m.4336C (odds ratio [OR] = 2.99; 95 % confidence interval [CI] = 1.79-5.02), m.7028T (OR = 0.80; 95 % CI = 0.70-0.91), m.10398G (OR = 0.92; 95 % CI = 0.85-0.98), and m.13368A (OR = 0.74; 95 % CI = 0.56-0.98). Four mtDNA macrohaplogroups were associated with PD: R (OR = 2.25; 95 % CI = 1.92-2.65), F (OR = 1.18; 95 % CI = 1.01-1.38), H (OR = 1.12; 95 % CI = 1.06-1.18), and B (OR = 0.77; 95 % CI = 0.65-0.92). CONCLUSIONS: Despite most studies may be underpowered by the underrepresentation of people without dominant European- and Asian-ancestry, low use of next-generation sequencing for genotyping and small sample sizes, the identification of mtDNA variants and macrohaplogroups associated with PD strengthens the link between the disease and mitochondrial dysfunction and mtDNA genomic instability.


Assuntos
DNA Mitocondrial , Haplótipos , Doença de Parkinson , Doença de Parkinson/genética , Humanos , DNA Mitocondrial/genética , Predisposição Genética para Doença , Variação Genética/genética
4.
Chemosphere ; 362: 142622, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880264

RESUMO

The heterogeneity and complexity of solvent-extracted organic matter associated with PM2.5 (SEOM-PM2.5) is well known; however, there is scarce information on its biological effects in human cells. This work aimed to evaluate the effect of SEOM-PM2.5 collected in northern Mexico City during the cold-dry season (November 2017) on NL-20 cells, a human bronchial epithelial cell line. The SEOM obtained accounted for 15.5% of the PM2.5 mass and contained 21 polycyclic aromatic hydrocarbons (PAHs). The cell viability decreased following exposure to SEOM-PM2.5, and there were noticeable morphological changes such as increased cell size and the presence of cytoplasmic vesicles in cells treated with 5-40 µg/mL SEOM-PM2.5. Exposure to 5 µg/mL SEOM-PM2.5 led to several alterations compared with the control cells, including the induction of double-stranded DNA breaks based (p < 0.001); nuclear fragmentation and an increased mitotic index (p < 0.05); 53BP1 staining, a marker of DNA repair by non-homologous end-joining (p < 0.001); increased BiP protein expression; and reduced ATF6, IRE1α, and PERK gene expression. Conversely, when exposed to 40 µg/mL SEOM-PM2.5, the cells showed an increase in reactive oxygen species formation (p < 0.001), BiP protein expression (p < 0.05), and PERK gene expression (p < 0.05), indicating endoplasmic reticulum stress. Our data suggest concentration-dependent toxicological effects of SEOM-PM2.5 on NL-20 cells, including genotoxicity, genomic instability, and endoplasmic reticulum stress.


Assuntos
Poluentes Atmosféricos , Brônquios , Sobrevivência Celular , Células Epiteliais , Material Particulado , Hidrocarbonetos Policíclicos Aromáticos , Solventes , Humanos , Células Epiteliais/efeitos dos fármacos , Material Particulado/toxicidade , Linhagem Celular , Poluentes Atmosféricos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Brônquios/citologia , Brônquios/efeitos dos fármacos , Solventes/toxicidade , Solventes/química , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , México , Espécies Reativas de Oxigênio/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-38575248

RESUMO

Type 2 diabetes mellitus (T2D) is a metabolic disease, which occurs largely due to unhealthy lifestyle. As oxidative stress is believed to promote T2D, by inducing damage to lipids, proteins, and DNA, appropriate dietary interventions seem critical to prevent, manage, and even reverse this condition. Brazil nuts (Bertholletia excelsa, H.B.K.) are nature's richest source of selenium, a mineral that has shown several health benefits. Therefore, this study aims to assess the effects of selenium consumption, through Brazil nuts, on biochemical and oxidative stress parameters, and genomic instability in T2D patients. We recruited 133 patients with T2D, registered in the Integrated Clinics of the University of Southern Santa Catarina (Brazil). Participants consumed one Brazil nut a day for six months. Blood samples and exfoliated buccal cells were collected at the beginning and the end of the intervention. The glycemic profile, lipid profile, renal profile and hepatic profile, DNA damage and selenium content were evaluated. A total of 74 participants completed the intervention. Brazil nut consumption increased selenium and GSH levels, GPx, and CAT activity while DCF and nitrites levels decreased. Total thiols increased, and protein carbonyl and MDA levels decreased. Levels of baseline and oxidative DNA damage in T2D patients were significantly decreased, as well as the frequency of micronuclei and nuclear buds. The fasting glucose levels, HDL and LDL cholesterol, and GGT levels that increased significantly in patients with type 2 diabetes were significantly reduced with nut consumption. Our results show an increase in antioxidant activity, along with reductions of protein and lipid oxidation as well as DNA damage, suggesting that Brazil nut consumption could be an ally in reducing oxidative stress and modulating the genomic instability in T2D patients.


Assuntos
Bertholletia , Diabetes Mellitus Tipo 2 , Selênio , Humanos , Bertholletia/química , Selênio/farmacologia , Sobrepeso , Diabetes Mellitus Tipo 2/genética , Mucosa Bucal , Lipídeos , Dano ao DNA , Instabilidade Genômica
6.
Int J Hyg Environ Health ; 256: 114307, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38065035

RESUMO

The extensive use of inhalational anesthetics contributes to both indoor and outdoor (environmental) pollution. The influence of genetic susceptibility on DNA damage and oxidative stress and the possible modulation of gene expression have not yet been investigated upon occupational exposure to waste anesthetic gases (WAGs). This study assessed 8-oxoguanine DNA glycosylase 1 (OGG1) and superoxide dismutase 2 (SOD2) gene expression, which are related to oxidized DNA repair and antioxidant capacity, respectively, and the influence of their polymorphisms (OGG1 rs1052133 and SOD2 rs4880) in 100 professionals highly exposed to WAGs and 93 unexposed volunteers (control group). Additionally, X-ray repair cross complementing 1 (XRCC1 rs25487 and rs1799782) and ataxia telangiectasia mutated (ATM rs600931) gene polymorphisms as well as genetic instability (micronucleus-MN and nuclear bud-NBUD) and oxidative stress (malondialdehyde-MDA and ferric reducing antioxidant power-FRAP) biomarkers were assessed in the groups (control and exposed) and in the subgroups of the exposed group according to job occupation (anesthesiologists versus surgeons/technicians). Except for the ATM TT controls (associated with increased FRAP), there were no influences of OGG1, XRCC1, ATM, and SOD2 polymorphisms on MN, NBUD, MDA, and FRAP values in exposed or control subjects. No significant difference in the expression of either gene evaluated (OGG1 and SOD2) was found between the exposed and control groups. Increased OGG1 expression was observed among OGG1 -/Cys individuals only in the control group. Among the exposed group, anesthesiologists had a greater duration of WAG exposure (both h/week and years) than surgeons/technicians, which was associated with increased MDA and decreased antioxidant capacity (FRAP) and SOD2 expression (redox status). Higher expression of OGG1 was found in -/Cys surgeons/technicians than in anesthesiologists with the same genotype. Increased antioxidant capacity was noted in the surgeons/technicians carrying the ATM T allele and in those carrying XRCC1 -/Gln. Increased MN was influenced by OGG1 -/Cys in surgeons/technicians. Anesthesiologists with ATM CC exhibited increased MN, and those carrying the C allele (CC/CT genotype) exhibited increased NBUD. SOD2 polymorphism did not seem to be relevant for WAG exposure. These findings contribute to advancing the knowledge on genetic susceptibility/gene expression/genetic instability/oxidative stress, including differences in job occupation considering the workload, in response to occupational exposure to WAGs.


Assuntos
Antioxidantes , Exposição Ocupacional , Humanos , Polimorfismo Genético , Dano ao DNA , Reparo do DNA , Genótipo , Predisposição Genética para Doença , Oxirredução , Expressão Gênica , Estudos de Casos e Controles , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética
7.
Toxics ; 11(10)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37888658

RESUMO

The continuous biomonitoring of a population directly or indirectly exposed to pesticides could be an additional tool for decision makers to improve their health conditions. In this work, we performed biomonitoring on two groups of people from the Mexicali Valley who were continuously exposed to pesticides using the cytokinesis-block micronucleus cytome assay (L-CBMN) to evaluate cytotoxic and genotoxic damage in human peripheral blood lymphocytes. The study groups comprised 14 indigenous Cucapah with non-vegetarian habits (NV group) from Ejido el Mayor (32.12594°, -115.27265°) and 21 lacto-ovo vegetarian (LOV) persons from the Seventh-day Adventist Church of Ejido Vicente Guerrero (32.3961°, -115.14023°). The L-CBMN assay determines the nuclear division index (NDI), apoptosis, necrosis, micronuclei (MNs), nuclear buds (NBUDs), and nucleoplasmic bridges (NPBs). Our results show that, regardless of diet or daily habits, both the studied groups presented with cytogenotoxic damage compared with non-exposed pesticide individuals, without modifications to the nuclear division index. In the rest of the evaluated biomarkers, the NV group exhibited greater cytotoxic and genotoxic damage than the LOV group. Nevertheless, individuals practicing a lacto-ovo vegetarian diet (LOV) showed lower damage than those with non-vegetarian habits (NV), suggesting a better antioxidant response that helps decrease the genotoxic damage due to the enhanced intake of folates and antioxidants from a plant-based diet.

8.
Artigo em Inglês | MEDLINE | ID: mdl-36923397

RESUMO

Chromosomal instability (CIN) has become a topic of great interest in recent years, not only for its implications in cancer diagnosis and prognosis but also for its role as an enabling feature and central hallmark of cancer. CIN describes cell-to-cell variation in the number or structure of chromosomes in a tumor population. Although extensive research in recent decades has identified some associations between CIN with response to therapy, specific associations with other hallmarks of cancer have not been fully evidenced. Such associations place CIN as an enabling feature of the other hallmarks of cancer and highlight the importance of deepening its knowledge to improve the outcome in cancer. In addition, studies conducted to date have shown paradoxical findings about the implications of CIN for therapeutic response, with some studies showing associations between high CIN and better therapeutic response, and others showing the opposite: associations between high CIN and therapeutic resistance. This evidences the complex relationships between CIN with the prognosis and response to treatment in cancer. Considering the above, this review focuses on recent studies on the role of CIN in cancer, the cellular mechanisms leading to CIN, its relationship with other hallmarks of cancer, and the emerging therapeutic approaches that are being developed to target such instability, with a primary focus on breast cancer. Further understanding of the complexity of CIN and its association with other hallmarks of cancer could provide a better understanding of the cellular and molecular mechanisms involved in prognosis and response to treatment in cancer and potentially lead to new drug targets.

9.
Curr Nutr Rep ; 12(1): 141-150, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36692807

RESUMO

PURPOSE OF REVIEW: Oxidative stress is related to the pathogenesis of several chronic diseases, including inflammatory processes. Free radicals excess increase not only oxidative stress but also genomic instability. Polyphenols are non-enzymatic antioxidants that act as a defense barrier against free radicals and non-radical oxidants. The purpose of this article was to review published articles relating dietary polyphenols contained in grape seed proanthocyanidin extracts with its potential for reversing DNA damage. RECENT FINDINGS: Proanthocyanidin components exert pleiotropic actions having several biological, biochemical, and significant pharmacological effects and showed the ability to reduce cytotoxicity and genotoxicity. Grape seed proanthocyanidin extracts showed the ability to reduce cytotoxicity and genotoxicity through the comet assay and the micronucleus technique.


Assuntos
Extrato de Sementes de Uva , Neoplasias , Vitis , Humanos , Extrato de Sementes de Uva/farmacologia , Radicais Livres , Dano ao DNA , Neoplasias/prevenção & controle , Polifenóis/farmacologia , Inflamação
10.
Int J Environ Health Res ; 33(10): 949-957, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35466826

RESUMO

Construction environment is composed of various substances classified as carcinogens. Thus, workers exposed in this environment can be susceptible to genomic instability that can be evaluated by absolute telomere length (TL). In this work, we evaluated TL in construction workers compared to a non-exposed group performed by qPCR assay. The TL was evaluated in 59 men exposed to the construction environment (10 years of exposure) and 49 men non-exposed. Our data showed that individuals exposed to the construction environment exhibited a significantly lower TL in relation to non-exposed group (p = 0.009). Also, on the multiple linear regression model, we observed that TL was significantly influenced by the construction environment exposure (p ≤ 0.001). Additionally, the arsenic exposure is associated to a shortening telomere (p ≤ 0.001), and the lead exposure caused an increase in TL (p ≤ 0.001). Thus, our findings suggest a modulation in TL by construction environment exposure, mainly by arsenic and lead exposure.


Assuntos
Arsênio , Masculino , Humanos , Arsênio/toxicidade , Chumbo/toxicidade , Exposição Ambiental , Linfócitos , Telômero
11.
Artigo em Inglês | MEDLINE | ID: mdl-36462797

RESUMO

The development of new drugs based on metal complexes requires a detailed analysis of their biological endpoints. In this study, we report the genotoxic profile and influence on cell proliferation and death of the oxovanadium(IV) complex with orotic acid ([VO(C5H4N2O4)2], VO(oro)). Human hepatocellular carcinoma cells (HepG2) were the most sensitive tumor cells to VO(oro), which interfered with the integrity of cell membranes and proliferative capacity in a dose-dependent manner, inducing cell death by apoptosis. Regarding genotoxicity, VO(oro) did not induce considerable levels of DNA damage in HepG2 cells (comet test) and gene mutations (Ames test). However, it caused a statistically significant increase in the frequency of micronuclei at the highest concentration tested (12.5 µmol.L-1), indicating aneuploidy and clastogenicity. The data presented here provide information on various biological aspects of the VO(oro) complex, which may allow the elucidation of its mechanism of action as a possible therapeutic agent.


Assuntos
Dano ao DNA , Ácido Orótico , Humanos , Mutagênicos/toxicidade , Mutação , Morte Celular
12.
Curr Issues Mol Biol ; 44(11): 5498-5515, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36354684

RESUMO

The WD repeat containing antisense to TP53 (WRAP53) gene codifies an antisense transcript for tumor protein p53 (TP53), stabilization (WRAP53α), and a functional protein (WRAP53ß, WDR79, or TCAB1). The WRAP53ß protein functions as a scaffolding protein that is important for telomerase localization, telomere assembly, Cajal body integrity, and DNA double-strand break repair. WRAP53ß is one of many proteins known for containing WD40 domains, which are responsible for mediating a variety of cell interactions. Currently, WRAP53 overexpression is considered a biomarker for a diverse subset of cancer types, and in this study, we describe what is known about WRAP53ß's multiple interactions in cell protein trafficking, Cajal body formation, and DNA double-strand break repair and its current perspectives as a biomarker for cancer.

13.
Reprod Fertil ; 3(4): L9-L11, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36374285

RESUMO

Lay summary: The placenta plays an essential role at the beginning of life, nourishing and supporting the fetus, but its life span is limited. In late pregnancy, the placenta develops signs of aging, including inflammation and impaired function, which may complicate pregnancy. Placentas also show another sign of aging - cells with extra or missing chromosomes. Chromosomally abnormal cells could gather in the placenta if they get stranded there and/or if the cells do not separate normally. Chromosome separation goes wrong in aging cells when the DNA sequences, which protect the ends of the chromosomes, erode. When chromosomes lose their protective caps, they fuse which leads to abnormal numbers of chromosomes. In this pilot study, for the first time, we found fusions between the caps in a human placenta when it reaches full term. More studies are needed to decide whether this has an influence on how the placenta works and outcomes of pregnancy.


Assuntos
Placenta , Animais , Humanos , Feminino , Gravidez , Projetos Piloto
14.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430597

RESUMO

Fanconi Anemia (FA) is a disease characterized by genomic instability, increased sensitivity to DNA cross-linking agents, and the presence of clonal chromosomal abnormalities. This genomic instability can compromise the bone marrow (BM) and confer a high cancer risk to the patients, particularly in the development of Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML). The diagnosis of FA patients is complex and cannot be based only on clinical features at presentation. The gold standard diagnostic assay for these patients is cytogenetic analysis, revealing chromosomal breaks induced by DNA cross-linking agents. Clonal chromosome abnormalities, such as the ones involving chromosomes 1q, 3q, and 7, are also common features in FA patients and are associated with progressive BM failure and/or a pre-leukemia condition. In this review, we discuss the cytogenetic methods and their application in diagnosis, stratification of the patients into distinct prognostic groups, and the clinical follow-up of FA patients. These methods have been invaluable for the understanding of FA pathogenesis and identifying novel disease biomarkers. Additional evidence is required to determine the association of these biomarkers with prognosis and cancer risk, and their potential as druggable targets for FA therapy.


Assuntos
Anemia de Fanconi , Leucemia Mieloide Aguda , Humanos , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/genética , Seguimentos , Análise Citogenética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Instabilidade Genômica , Aberrações Cromossômicas , Biomarcadores
15.
BMC Cancer ; 22(1): 1024, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175852

RESUMO

BACKGROUND: Telomere dysfunction results in aneuploidy, and ongoing chromosomal abnormalities. The three-dimensional (3D) nuclear organization of telomeres allows for a distinction between normal and tumor cells. On the other hand, aurora kinase genes (AURKA and AURKB) play an important role regulating the cell cycle. A correlation between overexpression of aurora kinase genes and clinical aggressiveness has been demonstrated in different types of neoplasias. To better understand cellular and molecular mechanisms of CML evolution, it was examined telomere dysfunction (alterations in the 3D nuclear telomere architecture), and the expression levels of AURKA and AURKB genes in two clinical distinct subgroups of CML samples, from the same patient. METHODS: Eighteen CML patients, in total, 36 bone marrow samples (18 patients, chronic vs. accelerated/blast phase) were eligible for 3D telomeric investigations. Quantitative 3D imaging, cytologic diagnosis and cytogenetic determination of additional chromosomal abnormalities were assessed according to standard protocols. RESULTS: Using TeloView software, two CML subgroups were defined based on their 3D telomeric profiles, reflecting the different stages of the disease (chronic vs. accelerated/blast phase). Statistical analyses showed significant differences between the CML subgroups (p < 0.001). We also found that AURKA and AURKB mRNA were expressed at significantly higher levels in both CML subgroups, when compared with healthy donors. Our findings suggest that the evolution of CML progresses from a low to a high level of telomere dysfunction, that is, from an early stage to a more aggressive stage, followed by disease transformation, as demonstrated by telomere, additional chromosomal abnormalities, and gene expression profile dynamics. CONCLUSIONS: Thus, we demonstrated that 3D telomere organization, in accordance with the genomic instability observed in CML samples were able to distinguish subgroup CML patients. Classifying CML patients based on these characteristics might represent an important strategy to define better therapeutic strategies.


Assuntos
Doença Enxerto-Hospedeiro , Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Aurora Quinase A/genética , Crise Blástica , Aberrações Cromossômicas , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , RNA Mensageiro , Telômero/genética
16.
Front Oncol ; 12: 949435, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091172

RESUMO

Inherited bone marrow failure syndromes (IBMFS) are a complex and heterogeneous group of genetic diseases. To date, at least 13 IBMFS have been characterized. Their pathophysiology is associated with germline pathogenic variants in genes that affect hematopoiesis. A couple of these diseases also have genomic instability, Fanconi anemia due to DNA damage repair deficiency and dyskeratosis congenita/telomere biology disorders as a result of an alteration in telomere maintenance. Patients can have extramedullary manifestations, including cancer and functional or structural physical abnormalities. Furthermore, the phenotypic spectrum varies from cryptic features to patients with significantly evident manifestations. These diseases require a high index of suspicion and should be considered in any patient with abnormal hematopoiesis, even if extramedullary manifestations are not evident. This review describes the disrupted cellular processes that lead to the affected maintenance of the genome structure, contrasting the dysmorphological and oncological phenotypes of Fanconi anemia and dyskeratosis congenita/telomere biology disorders. Through a dysmorphological analysis, we describe the phenotypic features that allow to make the differential diagnosis and the early identification of patients, even before the onset of hematological or oncological manifestations. From the oncological perspective, we analyzed the spectrum and risks of cancers in patients and carriers.

17.
AIDS Rev ; 25(2): 79-86, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35901108

RESUMO

Aging, a time-dependent loss of physiological function, and its drivers are turning into a significant topic of researchas the population's mean age increases. Epigenetic alterations, telomere shortening or dysfunction, mitogenic stress,oxidative stress, or accumulation of DNA damage can drive the cell to senescence a permanent cell cycle arrest sometimes associated with a secretory phenotype and inflammatory consequences in the surrounding tissue. The amount of senescent cellsgrows over time in older organisms and may induce tissue inflammation and threaten overall tissue homeostasis, favoring aging. Senolytic and senomorphic therapeuticsare an emerging approach to eliminate senescent cells or to block their secretoryphenotypes respectively. Given that people living with HIV suffer non-AIDS comorbidities in a higher prevalence than the general population, aging is accentuated among them. Inflammation biomarkers may be helpful to assess prognosis or act as surrogate endpoints for studies of strategies focused on reversal of HIV-associated accelerated aging. This review summarizes the latest findings in aging and its major drivers, under the light of HIV infection. Since the number of older PLWH is currently rising, it will be of great importance to address and treat their age-related conditions, as well as to better decipher their biological mechanisms.


Assuntos
Senescência Celular , Infecções por HIV , Envelhecimento , Biomarcadores , Senescência Celular/genética , Infecções por HIV/tratamento farmacológico , Humanos , Inflamação
18.
Artigo em Inglês | MEDLINE | ID: mdl-35649672

RESUMO

Brazil is one of the largest consumers of pesticides in the world. This high consumption has resulted in higher potential health risk to agricultural farm workers due to occupational exposure. Hence, the aim of this study is to evaluate genomic instability, using Buccal Micronucleus Cytome (BMCyt) and telomere length (TL) measurement as biomarkers of occupational exposure to pesticides in rural workers living in the State of São Paulo, Brazil. Genomic instability was evaluated in 81 pesticide-exposed farm workers (69 males and 12 females) with a mean age of 49.16 ± 10.06 years and a mean time job of 30.00 ± 14.00 years,81 non-exposed individuals (62 males and 15 females) with a mean age of 47.87 ± 10.66 years. BMCyt results showed significantly higher levels of cell damage (micronuclei and binucleated cells) and cell death (karyorrhectic and condensed chromatin cells) in subjects exposed to pesticide when compared to those non-exposed (p < 0.05). Although our results did not show significant differences in TL among exposed and non-exposed groups, effects in TL due to pesticide exposure was found in a multivariable linear regression model when we stratified the groups by age (≤ 49 years and ≥ 50 years old; ß = 11.21, p = 0.006). In addition, TL reduction on was identified in relation to an increase in cigarette pack consumption (ß = -0.633, p = 0.045). Furthermore, exposure to specific pesticides presented different effects in TL. Cypermethrin exposure resulted in a reduction in TL (ß = -18.039, p = 0.018), while abamectin exposure led to an increase in TL (ß = 23.990, p = 0.007). Thus, our findings substantiate genomic instability due to pesticides exposure.


Assuntos
Fazendeiros , Praguicidas , Adulto , Brasil , Dano ao DNA , Feminino , Instabilidade Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Praguicidas/toxicidade , Telômero/genética
19.
An. Fac. Cienc. Méd. (Asunción) ; 55(1): 27-38, 20220401.
Artigo em Espanhol | LILACS, BDNPAR | ID: biblio-1366663

RESUMO

Introducción: Procesos como la mutagénesis, la carcinogénesis y la teratogénesis son producto de la interacción de agentes de origen endógeno como exógeno que interactúan con la molécula de ADN en forma crónica produciendo rupturas en la doble hélice, y en cromosomas completos resultando en la inestabilidad genómica. El estrés oxidativo al que se encuentran sometidas las células al formarse las especies reactivas de oxígeno (ROS) y también las especies reactivas de nitrógeno (RNS), que pueden provenir de radicales producidos a consecuencia de la diabetes o en estados iniciales de la enfermedad renal crónica o como respuesta a procesos inflamatorios en estados avanzados de estas patologías, actúan como agentes genotóxicos endógenos.Objetivos: Esta investigación tuvo como objetivo determinar el daño basal en la molécula de ADN de pacientes diabéticos hemodializados, a través del ensayo del Cometa, como un bioindicador de inestabilidad genómica., durante seis meses de tratamiento. Materiales y métodos: Se planteó un estudio longitudinal prospectivo de cohorte para comparar los diferentes niveles de daño antes y durante los primeros seis del tratamiento de hemodiálisis. Se evaluó con el test del cometa o electroforesis de células individuales, el daño basal en muestras de sangre venosa de pacientes diagnosticados con Diabetes de tipo II como control negativo y en pacientes diabéticos con enfermedad renal crónica antes de iniciar el tratamiento de diálisis y luego durante el tratamiento. Se utilizó el test de t- Student para muestras independientes y emparejadas. Resultados: Se observó un aumento significativo de daño basal y oxidativo en el material genético de pacientes diabéticos con enfermedad renal crónica, comparados con los controles negativos (p< 0.005) y se observó, además, que el daño celular aumenta con el tratamiento de hemodiálisis (p<0.005). Conclusión: Los resultados obtenidos en esta investigación permiten concluir que el estrés oxidativo tiene un efecto genotóxico y que el nivel de daño genético es un buen bioindicador del avance de la enfermedad renal crónica y que la hemodiálisis induce a un aumento de daño a nivel del material genético, aumentando el riesgo de carcinogénesis.


Introduction: Processes such as mutagenesis, carcinogenesis and teratogenesis are the product of the interaction of agents of endogenous and exogenous origin that interact with the DNA molecule in a chronic way producing ruptures in the double helix, and in complete chromosomes resulting in genomic instability. The oxidative stress to which the cells are subjected when reactive oxygen species (ROS) and reactive nitrogen species (RNS) are formed, which may come from radicals produced as a result of diabetes or in initial stages of chronic kidney disease or in response to inflammatory processes in advanced stages of these pathologies, act as endogenous genotoxic agents. Objectives: This research aimed to determine the basal damage in the DNA molecule of hemodialyzed diabetic patients, through the Comet assay, as a bioindicator of genomic instability, during six months of treatment. Materials and methods: For this research, a prospective longitudinal cohort study was proposed to compare the different levels of genetic damage before and during the first six of hemodialysis treatment. Baseline damage was evaluated with the comet test or single cell electrophoresis, in venous blood samples from patients diagnosed with Type II Diabetes as a negative control and in diabetic patients with chronic kidney disease before starting dialysis treatment and then during treatment. Results: A significant increase in basal and oxidative damage was observed in the genetic material of diabetic patients with chronic kidney disease, compared to negative controls (p< 0.005) and it was also observed that cell damage increases with hemodialysis treatment (p<0.005). The t-Student test was used for independent and paired samples. Conclusion: The results obtained in this research allow us to conclude that oxidative stress has a genotoxic effect and that the level of genetic damage is a good bioindicator of the progression of chronic kidney disease and that hemodialysis induces an increase in damage at the level of the genetic material, increasing the risk of carcinogenesis.


Assuntos
Diálise Renal , Ensaio Cometa , Diálise , Pesquisa , DNA , Estresse Oxidativo
20.
Front Cell Dev Biol ; 9: 774845, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901021

RESUMO

DNA replication must be precisely controlled in order to maintain genome stability. Transition through cell cycle phases is regulated by a family of Cyclin-Dependent Kinases (CDKs) in association with respective cyclin regulatory subunits. In normal cell cycles, E-type cyclins (Cyclin E1 and Cyclin E2, CCNE1 and CCNE2 genes) associate with CDK2 to promote G1/S transition. Cyclin E/CDK2 complex mostly controls cell cycle progression and DNA replication through phosphorylation of specific substrates. Oncogenic activation of Cyclin E/CDK2 complex impairs normal DNA replication, causing replication stress and DNA damage. As a consequence, Cyclin E/CDK2-induced replication stress leads to genomic instability and contributes to human carcinogenesis. In this review, we focus on the main functions of Cyclin E/CDK2 complex in normal DNA replication and the molecular mechanisms by which oncogenic activation of Cyclin E/CDK2 causes replication stress and genomic instability in human cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA