Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 8(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35330219

RESUMO

Pectin is a major constituent of the plant cell wall, comprising compounds with important industrial applications such as homogalacturonan, rhamnogalacturonan and xylogalacturonan. A large array of enzymes is involved in the degradation of this amorphous substrate. The Glycoside Hydrolase 28 (GH28) family includes polygalacturonases (PG), rhamnogalacturonases (RG) and xylogalacturonases (XG) that share a structure of three to four pleated ß-sheets that form a rod with the catalytic site amidst a long, narrow groove. Although these enzymes have been studied for many years, there has been no systematic analysis. We have collected a comprehensive set of GH28 encoding sequences to study their evolution in fungi, directed at obtaining a functional classification, as well as at the identification of substrate specificity as functional constraint. Computational tools such as Alphafold, Consurf and MEME were used to identify the subfamilies' characteristics. A hierarchic classification defines the major classes of endoPG, endoRG and endoXG as well as three exoPG classes. Ascomycete endoPGs are further classified in two subclasses whereas we identify four exoRG subclasses. Diversification towards exomode is explained by loops that appear inserted in a number of turns. Substrate-driven diversification can be identified by various specificity determining positions that appear to surround the binding groove.

2.
BMC Bioinformatics ; 19(1): 464, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514213

RESUMO

BACKGROUND: Sedolisins are acid proteases that are related to the basic subtilisins. They have been identified in all three superkingdoms but are not ubiquitous, although fungi that secrete acids as part of their lifestyle can have up to six paralogs. Both TriPeptidyl Peptidase (TPP) and endopeptidase activity have been identified and it has been suggested that these correspond to separate subfamilies. RESULTS: We studied eukaryotic sedolisins by computational analysis. A maximum likelihood tree shows one major clade containing non-fungal sequences only and two major as well as two minor clades containing only fungal sequences. One of the major fungal clades contains all known TPPs whereas the other contains characterized endosedolisins. We identified four Cluster Specific Inserts (CSIs) in endosedolisins, of which CSIs 1, 3 and 4 appear as solvent exposed according to structure modeling. Part of CSI2 is exposed but a short stretch forms a novel and partially buried α-helix that induces a conformational change near the binding pocket. We also identified a total of 15 specificity determining positions (SDPs) of which five, identified in two independent analyses, form highly connected SDP sub-networks. Modeling of virtual mutants suggests a key role for the W307A or F307A substitution. The remaining four key SDPs physically interact at the interface of the catalytic domain and the enzyme's prosegment. Modeling of virtual mutants suggests these SDPs are indeed required to compensate the conformational change induced by CSI2 and the A307. One of the two small fungal clades concerns a subfamily that contains 213 sequences, is mostly similar to the major TPP subfamily but differs, interestingly, in position 307, showing mostly isoleucine and threonine. CONCLUSIONS: Analysis confirms there are at least two sedolisin subfamilies in fungi: TPPs and endopeptidases, and suggests a third subfamily with unknown characteristics. Sequence and functional diversification was centered around buried SDP307 and resulted in a conformational change of the pocket. Mutual Information network analysis forms a useful instrument in the corroboration of predicted SDPs.


Assuntos
Aminopeptidases/metabolismo , Carboxipeptidases/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Fungos/metabolismo , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Filogenia
3.
BMC Bioinformatics ; 19(1): 338, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30249179

RESUMO

BACKGROUND: Eqolisins are rare acid proteases found in archaea, bacteria and fungi. Certain fungi secrete acids as part of their lifestyle and interestingly these also have many eqolisin paralogs, up to nine paralogs have been recorded. This suggests a process of functional redundancy and diversification has occurred, which was the subject of the research we performed and describe here. RESULTS: We identified eqolisin homologs by means of iterative HMMER analysis of the NR database. The identified sequences were scrutinized for which new hallmarks were identified by molecular dynamics simulations of mutants in highly conserved positions, using the structure of an eqolisin that was crystallized in the presence of a transition state inhibitor. Four conserved glycines were shown to be important for functionality. A substitution of W67F is shown to be accompanied by the L105W substitution. Molecular dynamics shows that the W67 binds to the substrate via a π-π stacking and a salt bridge, the latter being stronger in a virtual W67F/L105W double mutant of the resolved structure of Scytalido-carboxyl peptidase-B (PDB ID: 2IFW). Additional problematic mutations are discussed. Upon sequence scrutiny we obtained a set of 233 sequences that was used to reconstruct a Bayesian phylogenetic tree. We identified 14 putative specificity determining positions (SDPs) of which four are explained by mere structural explanations and nine seem to correspond to functional diversification related with substrate binding and specificity. A first sub-network of SDPs is related to substrate specificity whereas the second sub-network seems to affect the dynamics of three loops that are involved in substrate binding. CONCLUSION: The eqolisins form a small superfamily of acid proteases with nevertheless many paralogs in acidic fungi. Functional redundancy has resulted in diversification related to substrate specificity and substrate binding.


Assuntos
Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo , Simulação de Dinâmica Molecular , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Ácido Aspártico Endopeptidases/genética , Teorema de Bayes , Sítios de Ligação , Sequência Conservada , Evolução Molecular , Transferência Genética Horizontal/genética , Glicina/química , Modelos Moleculares , Mutação/genética , Filogenia , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato , Termodinâmica
4.
Genome Biol Evol ; 6(6): 1480-94, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24869856

RESUMO

The A1 family of eukaryotic aspartic proteinases (APs) forms one of the 16 AP families. Although one of the best characterized families, the recent increase in genome sequence data has revealed many fungal AP homologs with novel sequence characteristics. This study was performed to explore the fungal AP sequence space and to obtain an in-depth understanding of fungal AP evolution. Using a comprehensive phylogeny of approximately 700 AP sequences from the complete proteomes of 87 fungi and 20 nonfungal eukaryotes, 11 major clades of APs were defined of which clade I largely corresponds to the A1A subfamily of pepsin-archetype APs. Clade II largely corresponds to the A1B subfamily of nepenthesin-archetype APs. Remarkably, the nine other clades contain only fungal APs, thus indicating that fungal APs have undergone a large sequence diversification. The topology of the tree indicates that fungal APs have been subject to both "birth and death" evolution and "functional redundancy and diversification." This is substantiated by coclustering of certain functional sequence characteristics. A meta-analysis toward the identification of Cluster Determining Positions (CDPs) was performed in order to investigate the structural and biochemical basis for diversification. Seven CDPs contribute to the secondary structure of the enzyme. Three other CDPs are found in the vicinity of the substrate binding cleft. Tree topology, the large sequence variation among fungal APs, and the apparent functional diversification suggest that an amendment to update the current A1 AP classification based on a comprehensive phylogenetic clustering might contribute to refinement of the classification in the MEROPS peptidase database.


Assuntos
Ácido Aspártico Proteases/genética , Fungos/enzimologia , Fungos/genética , Filogenia , Sequência de Aminoácidos , Animais , Ácido Aspártico Proteases/química , Evolução Molecular , Fungos/química , Modelos Moleculares , Dados de Sequência Molecular , Proteoma/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA