Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(13): 8275-8289, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38877535

RESUMO

BACKGROUND: This study evaluated for the first time the potential of orange passion fruit as a base for alcoholic and acetic fermentations, with a view to assessing its profile of organic acids and polyphenols, in vitro digestion, and biological activities. RESULTS: In terms of aliphatic organic acids, malic acid was the majority in the wine (3.19 g L-1), while in the vinegar, it was acetic acid (46.84 g L-1). 3,4-Dihydroxybenzoic acid (3,4-DHB) was the major phenolic compound in the wine and vinegar samples (3443.93 and 2980.00 µg L-1, respectively). After the in vitro gastrointestinal simulation stage, the wine showed high bioaccessibility for the compounds sinipaldehyde (82.97%) and 2,4-dihydroxybenzoic acid (2,4-DHBA, 81.27%), while the vinegar exhibited high bioaccessibility for sinipaldehyde (89.39%). Through multivariate analysis, it was observed that 3,4-DHB was highly concentrated in the different digested fractions obtained from the wine. In contrast, in the vinegar, the stability of isorahmenetin and Quercetin 3-o-rhamnoside was observed during the in vitro digestion simulation. Lastly, the vinegar stood out for its inhibition rates of α-amylase (23.93%), α-glucoside (18.34%), and angiotensin-converting enzyme (10.92%). In addition, the vinegar had an inhibitory effect on the pathogenic microorganisms Salmonella enteritidis, Escherichia coli, and Listeria monocytogenes. CONCLUSION: Orange passion fruit has proved to be a promising raw material for the development of fermented beverages. Therefore, this study provides an unprecedented perspective on the use and valorization of orange passion fruit, contributing significantly to the advancement of knowledge about fermented products and the associated nutritional and functional possibilities. © 2024 Society of Chemical Industry.


Assuntos
Ácido Acético , Digestão , Fermentação , Frutas , Passiflora , Fenóis , Vinho , Passiflora/química , Passiflora/metabolismo , Frutas/química , Frutas/metabolismo , Ácido Acético/metabolismo , Ácido Acético/química , Ácido Acético/análise , Fenóis/metabolismo , Fenóis/análise , Fenóis/química , Vinho/análise , Humanos , Escherichia coli/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Malatos/análise , Malatos/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Polifenóis/metabolismo , Polifenóis/análise , Polifenóis/química
2.
J Sci Food Agric ; 99(5): 2267-2274, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30328118

RESUMO

BACKGROUND: To reduce postharvest losses, substandard fruit and agricultural surpluses can productively be used as raw material for vinegar production. The present study aimed to prepare vinegars from surpluses of physalis (Physalis pubescens L.) and red pitahaya (Hylocereus monacanthus) and then evaluate their sensorial characteristics, antimicrobial activities, total phenolic content (TPC) and total antioxidant capacity by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzo thiazoline-6-sulfonic acid) methods. RESULTS: Two vinegars were produced by submerged fermentation using physalis and red pitahaya fruits surpluses. Physalis and red pitahaya vinegars had 47 and 45 g L-1 acetic acid, respectively, and both vinegars contained approximately 1 g L-1 ethanol. Both vinegars displayed antimicrobial activity against Escherichia coli, Listeria monocytogenes, Staphylococcus aureus and Salmonella enteritidis. The TPC of physalis and red pitahaya vinegar was 0.5638 and 0.3656 g L-1 g gallic acid L-1 for physalis and red pitahaya, respectively. A similar antioxidant activity was detected in both the wines and vinegars. The sensorial analysis revealed that the consumers 'like moderately' each vinegar, and citric aroma was noted in the physalis vinegar. CONCLUSION: In the present study, vinegars with sensorial characteristics approved by consumers were developed using fruit surpluses, adding value through a new product making use of a simple methodology that is both inexpensive and demonstrates a good yield. © 2018 Society of Chemical Industry.


Assuntos
Ácido Acético/metabolismo , Bebidas Alcoólicas/análise , Antibacterianos/química , Antioxidantes/química , Cactaceae/química , Physalis/química , Ácido Acético/análise , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Cactaceae/metabolismo , Cactaceae/microbiologia , Fermentação , Humanos , Fenóis/química , Fenóis/metabolismo , Fenóis/farmacologia , Physalis/metabolismo , Physalis/microbiologia , Paladar
3.
Food Technol Biotechnol ; 54(3): 351-359, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27956867

RESUMO

Cell immobilization comprises the retention of metabolically active cells inside a polymeric matrix. In this study, the production of jabuticaba (Myrciaria jaboticaba) vinegar using immobilized Acetobacter aceti and Gluconobacter oxydans cells is proposed as a new method to prevent losses of jabuticaba fruit surplus. The pulp of jabuticaba was processed and Saccharomyces cerevisiae CCMA 0200 was used to ferment the must for jabuticaba wine production. Sugars, alcohols (ethanol and glycerol) and organic acids were assayed by high-performance liquid chromatography. Volatile compounds were determined by gas chromatography-flame ionization detector. The ethanol content of the produced jabuticaba wine was approx. 74.8 g/L (9.5% by volume) after 168 h of fermentation. Acetic acid fermentation for vinegar production was performed using a mixed culture of immobilized A. aceti CCT 0190 and G. oxydans CCMA 0350 cells. The acetic acid yield was 74.4% and productivity was 0.29 g/(L·h). The vinegar had particularly high concentrations of citric (6.67 g/L), malic (7.02 g/L) and succinic (5.60 g/L) acids. These organic acids give a suitable taste and flavour to the vinegar. Seventeen compounds (aldehydes, higher alcohols, terpene, acetate, diether, furans, acids, ketones and ethyl esters) were identified in the jabuticaba vinegar. In conclusion, vinegar was successfully produced from jabuticaba fruits using yeast and immobilized mixed cultures of A. aceti and G. oxydans. To the best of our knowledge, this is the first study to use mixed culture of immobilized cells for the production of jabuticaba vinegar.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA