RESUMO
Papaya (Carica papaya) is a trioecious species with female, male, and hermaphrodite plants. Given the sex segregation, selecting hermaphroditic plants is vital for orchard establishment due to their greater commercial value. However, selecting hermaphrodite plants through sexing is laborious and costly. Moreover, environmental stressors can exacerbate the issue by potentially inducing abnormal flower development, thus affecting fruit quality. Despite these challenges, the molecular mechanisms governing sex development in papaya remain poorly understood. Thus, this study aimed to identify proteins associated with sex development in female and hermaphrodite flowers of papaya through comparative proteomic analysis. Proteins from flower buds at the early and late developmental stages of three papaya genotypes (UENF-CALIMAN 01, JS12, and Sunrise Solo 72/12) were studied via proteomic analysis via the combination of the shotgun method and nanoESI-HDMSE technology. In buds at an early stage of development, 496 (35.9%) proteins exhibited significantly different abundances between sexes for the SS72/12 genotype, 139 (10%) for the JS12 genotype, and 165 (11.9%) for the UC-01 genotype. At the final stage of development, there were 181 (13.5%) for SS72/12, 113 (8.4%) for JS12, and 125 (9.1%) for UC-01. The large group of differentially accumulated proteins (DAPs) between the sexes was related to metabolism, as shown by the observation of only the proteins that exhibited the same pattern of accumulation in the three genotypes. Specifically, carbohydrate metabolism proteins were up-regulated in hermaphrodite flower buds early in development, while those linked to monosaccharide and amino acid metabolism increased during late development. Enrichment of sporopollenin and phenylpropanoid biosynthesis pathways characterizes hermaphrodite samples across developmental stages, with predicted protein interactions highlighting the crucial role of phenylpropanoids in sporopollenin biosynthesis for pollen wall formation. Most of the DAPs played key roles in pectin, cellulose, and lignin synthesis and were essential for cell wall formation and male flower structure development, notably in the pollen coat. These findings suggest that hermaphrodite flowers require more energy for development, likely due to complex pollen wall formation. Overall, these insights illuminate the molecular mechanisms of papaya floral development, revealing complex regulatory networks and energetic demands in the formation of male reproductive structures.
Assuntos
Biopolímeros , Carica , Carotenoides , Carica/genética , Proteômica , Processos de Determinação Sexual , Flores/genética , Regulação da Expressão Gênica de PlantasRESUMO
Noncoding and coding RNAs are key regulators of plant growth, development, and stress responses. To investigate the types of transcripts accumulated during the vegetative to reproductive transition and floral development in the Coffea arabica L., we sequenced small RNA libraries from eight developmental stages, up to anthesis. We combined these data with messenger RNA and PARE sequencing of two important development stages that marks the transition of an apparent latent to a rapid growth stage. In addition, we took advantage of multiple in silico tools to characterize genomic loci producing small RNAs such as phasiRNAs, miRNAs, and tRFs. Our differential and co-expression analysis showed that some types of small RNAs such as tRNAs, snoRNAs, snRNAs, and phasiRNAs preferentially accumulate in a stage-specific manner. Members of the miR482/miR2118 superfamily and their 21-nucleotide phasiRNAs originating from resistance genes show a robust co-expression pattern that is maintained across all the evaluated developmental stages. Finally, the majority of miRNAs accumulate in a family stage-specific manner, related to modulated hormonal responses and transcription factor expression.
Assuntos
Coffea , Flores , Regulação da Expressão Gênica de Plantas , MicroRNAs , RNA de Plantas , Coffea/genética , Coffea/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , RNA de Plantas/genética , MicroRNAs/genética , TetraploidiaRESUMO
Several grapevine (Vitis vinifera L.) cultivars show a tendency to develop parthenocarpic seedless grapes, affecting fruit yield and quality. This reproductive disorder originates in defective ovule fertilization due to a failure in pollen tube growth. Zinc (Zn) is a crucial trace element, playing a vital role in various physiological and metabolic processes. It is particularly essential for the healthy growth of flowers and fruits. Insufficient zinc has been suggested as a potential reason for issues in this development process. This microelement is taken up through a mechanism that involves transporters, including the ZRT-IRT-like protein (ZIP) gene family, associated with the influx of Zn into the cell. In grapevines, 20 genes for ZIP-type transporters have been described. In this study, we analyzed the expression pattern of VviZIP3 during flower development and employ transgenic methods to assess its transcriptional regulation. Furthermore, through computational examination of the promoter region, we identified two CArG boxes, recognized as responsive elements to MADS transcription factors. These factors play a key role in shaping various components of a flower, such as pollen. Our investigation of the VviZIP3 promoter confirms the functionality of these CArG boxes. Overall, our results suggest that the increased expression of VviZIP3 during flowering is likely under the influence of MADS transcription factors.
RESUMO
KEY MESSAGE: Through a multidisciplinary study we found that Gymnocalycium bruchii, an endemic cactus from central Argentina, acts as a dioecious species, which is the first record in this genus. Cactaceae species are typically hermaphroditic; however, about 2% have other different reproductive systems. These non-hermaphroditic species may develop sexual dimorphism in flowers or other reproductive, vegetative or ecological traits, besides a specific breeding system and floral ontogeny. Therefore, multidisciplinary research is necessary to fully understand reproduction in those species. For this purpose, we studied Gymnocalicium bruchii, a globose cactus endemic to central Argentina that is presumably dioecious or gynodioecious. We made observations in two natural and two cultivated populations. We made morphological observations of plants and flowers, and performed quantitative analyses to determine the sex ratio, size of plants and flowers, flower production, fruiting, among other variables. We performed hand-pollination, self-fertilization and free-pollination tests to determine the breeding system. Finally, we studied the anatomy and ontogeny of the reproductive organs using permanent histological slides of flower morphs at different stages. Our results confirm that Gymnocalicium bruchii is a dioecious species. Female flowers have atrophied anthers and a functional gynoecium that produces fruits and seeds. Male flowers are bigger and have a functional androecium but a sterile gynoecium. In the cultivated population, the sex ratio was 1/1, whereas the number of male individuals was higher in both natural populations. Pollination tests corroborated dioecy. Ontogenetic studies revealed that in female flowers the anthers collapse before microspore maturation, while in male flowers the gynoecium shows normal development of the ovary, style, stigma, and ovules; however, the latter are never fertilized.
RESUMO
Background: The present ontogenetic study reveals variations throughout floral development in three morphologically representative species from the genus Tachigali, allowing a better understanding of floral organs diversity, flower symmetry and their homologies, especially in Fabaceae, a diverse family that exhibits a wide variation in floral architecture. Tachigali (Caesalpinioideae) corresponds to an important Neotropical legumes tree genus with 58 species in Brazil. Species of the genus Sclerolobium Vogel were incorporated in its circumscription, increasing the diversity of its floral morphology. Methods: This work aims to perform an ontogenetic study of T. denudata, T. paratyensis and T. spathulipetala, morphologically representative species of Tachigali, in order to describe the floral development and to better comprehend the floral morphology varieties among the species, using scanning electron microscopy. Results: We found the studied species to have floral buds with acropetal and helical development along the inflorescence axis; sepals and petals with helical development, varying the position of the primordia in the bud, according to the different species; stamens with unilateral development and carpel with adaxial curvature. These data correspond to original records of Tachigali ontogeny and contribute to an improved understanding of floral morphology and symmetry with data related to the zygomorphic and early development of the sepals and petals.
Assuntos
Fabaceae , Fabaceae/anatomia & histologia , Flores/anatomia & histologia , Verduras , Inflorescência , Microscopia Eletrônica de VarreduraRESUMO
The androecium of Melastomataceae presents notable modifications in its merosity, morphology between whorls and in prolonged connectives and appendages. We carried out a comparative study of six Melastomataceae species to shed light on the developmental processes that originate such stamen diversity. The development of stamens was studied using scanning electron microscopy and histological observations. The stamens of all species studied have a curved shape because they emerge on a plane displaced by the perigynous hypanthium. They are the last flower organs to initiate and therefore their growth is inwards and towards the floral center. Despite the temporal inversion between carpels and stamens in Melastomataceae, the androecium maintains the centripetal pattern of development, the antepetalous stamens emerging after antesepalous stamens. The isomerous androecium can be the result of abortion of the antepetalous stamens, whereas heterostemony seems to be caused by differences in position and the stamen development time. Pedoconnectives and ventral appendages originate from the basal expansion of the anther late in floral development. The delay in stamen development may be a consequence of their dependence on the formation of a previous space so that they can grow. Most of the stamen diversity is explained by the formation of the connectives and their appendages. The formation of a basal-ventral anther prolongation, which culminates in the development of the pedoconnective, does not differ from other types of sectorial growth of the connective, which form shorter structures.
Assuntos
Melastomataceae , Flores/anatomia & histologia , Melastomataceae/anatomia & histologia , Microscopia Eletrônica de VarreduraRESUMO
Mechanical forces acting within the plant body that can mold flower shape throughout development received little attention. The palette of action of these forces ranges from mechanical pressures on organ primordia at the microscopic level up to the twisting of a peduncle that promotes resupination of a flower at the macroscopic level. Here, we argue that without these forces acting during the ontogenetic process, the actual flower phenotype would not be achieved as it is. In this review, we concentrate on mechanical forces that occur at the microscopic level and determine the fate of the flower shape by the physical constraints on meristems at an early stage of development. We thus highlight the generative role of mechanical forces over the floral phenotype and underline our general view of flower development as the sum of interactions of known physiological and genetic processes, together with physical aspects and mechanical events that are entangled towards the shaping of the mature flower.
RESUMO
PREMISE: Celtis is the most species-rich genus of Cannabaceae, an economically important family. Celtis species have been described as wind-pollinated and andromonoecious. However, the andromonoecy of Celtis has been debated because there are reports of monoclinous flowers with non-opening anthers on short filaments. Our objective was to study the floral morphogenesis of Celtis to establish the breeding system and to better understand the developmental patterns that lead to the formation of reduced flowers in the genus. METHODS: Flowers and floral buds of Celtis species were studied using scanning electron microscopy, high-resolution x-ray computed tomography, and light microscopy. RESULTS: All flowers initiate stamens and carpels during early floral development, but either stamens or carpels abort during later stages. Thus, at anthesis, flowers are either functionally pistillate or functionally staminate. In pistillate flowers, stamens abort late and become staminodes with normal-looking anthers. These anthers have no functional endothecium and, in most of the species studied, produce no viable pollen grains. The gynoecium is pseudomonomerous, and its vascularization is similar in the sampled species. In staminate flowers, the gynoecium aborts early resulting in small pistillodes. No vestiges of petals were found. CONCLUSIONS: The species studied are monoecious and not andromonoecious as described earlier. The absence of petals, the carpel and stamen abortion, and the pseudomonomerous gynoecium result in the reduced flowers of Celtis species. The use of high-resolution x-ray computed tomography was essential for a more accurate interpretation of ovary vascularization, confirming the pseudomonomerous structure of the gynoecium.
Assuntos
Cannabaceae , Ulmaceae , Flores , Morfogênese , Melhoramento VegetalRESUMO
Abstract Introducction: Gaiadendron punctatum is a hemiparasitic species of Loranthaceae (Tribe Gaiadendreae) that is widely distributed in mountainous regions of Central and South America. Embryological and phylogenetic studies in the family indicate a trend towards reduction of the gynoecium and ovules, the morphology of which supports the current circumscription of Tribe Gaiadendreae (Gaiadendron and Atkinsonia). Molecular phylogenetic studies suggest that Nuytsia, Atkinsonia and Gaiadendron diverged successively, forming a grade at the base of the Loranthaceae, but support values are low. Objetive: In the present study, the floral anatomy of Gaiadendron punctatum was investigated in order to provide additional data to permit comparisons among the three basal-most genera in the Loranthaceae and reevaluate their relationships. Methods: Flowers of G. punctatum were collected at different developmental stages and serial sections were prepared and analyzed by light microscopy. Results: Inflorescence development is acropetal; the flowers are bisexual with an inferior ovary surmounted by a calyculus, a ring-shaped structure lacking vascular tissue; the ovary is comprised of seven basal locules, each with an ategmic, tenuinucellate ovule. Above the locules is a mamelon that is fused with the adjacent tissues. The androecium is comprised of seven epipetalous stamens, the anthers with fibrous endothecium dehiscence through a single longitudinal slit, releasing tricolpated pollen. Conclusions: The results of this study show that Gaiadendron and Atkinsonia share versatile, dorsifixed anthers, while Gaiadendron and Nuytsia share the same mode of anther dehiscence. On the other hand, Gaiadendron shares with members of Tribe Elytrantheae an amyliferous mamelon and an unvascularized calyculus. Combined phylogenetic analyses of morphological and molecular data are desirable to determine whether Tribe Gaiadendreae comprises a clade, a grade or if the two genera are more distantly related.
Resumen Introducción: Gaiadendron punctatum es una especie hemiparásita perteneciente a uno de los tres géneros basales de la familia Loranthaceae, siendo los otros dos Nuytsia y Atkinsonia. El género está conformado por dos especies distribuidas en regiones montañosas de Sudamérica y Centroamérica. Tanto los estudios embriológicos, como los filogenéticos, indican una tendencia hacia la reducción del gineceo y de los óvulos en la familia, cuya morfología respalda la circunscripción de la tribu Gaiadendreae (Gaiadendron y Atkinsonia). Estudios filogenéticos moleculares sugieren que Nuytsia, Atkinsonia y Gaiadendron divergieron sucesivamente, formando un grado en la base de la familia Loranthaceae, pero los valores en los que se sustenta son bajos. Objetivo: En el presente trabajo se describe la anatomía floral de la especie Gaiadendron punctatum con el objetivo de complementar la información embriológica, de manera que se pueda comparar directamente la morfología floral y los caracteres embriológicos entre los tres géneros basales de la familia Loranthaceae y reevaluar sus relaciones. Métodos: Las flores de G. punctatum fueron recolectadas en diferentes estados de desarrollo, se realizaron cortes histológicos seriados, se tiñeron con azul de astra y fucsina, y se analizaron mediante microscopía óptica. Resultados: Las inflorescencias mostraron un desarrollo acrópeto, las flores bisexuales presentaron ovario ínfero con presencia de una estructura en forma de anillo, carente de tejidos vasculares llamada calículo; el ovario se compone por siete lóculos basales, cada uno con un óvulo atégmico tenuinucelar. Por encima de los óvulos, el mamelón se fusiona con los tejidos adyacentes. El androceo está conformado por siete estambres epipétalos, las anteras presentan un endotecio fibroso y granos de polen tricolpados. La dehiscencia de las anteras es mediante una sola apertura longitudinal. Conclusiones: Los resultados del presente trabajo demuestran que Gaiadendron y Atkinsonia comparten anteras dorsifijas y versátiles, mientras Gaiadendron y Nuytsia comparten el tipo de dehiscencia anteral y por otro lado Gaiadendron comparte los caracteres de mamelón amilífero y calículo no vascularizado con la tribu Elytrantheae. La clasificación del género Gaiadendron con respecto a los dos géneros basales de la familia debe ser objeto de investigación (análisis filogenético combinado) que permita dirimir si la tribu Gaiadendrae es un clado, un grado o dos géneros más lejanamente emparentados.
Assuntos
Loranthaceae/genética , Epistasia GenéticaRESUMO
BACKGROUND AND AIMS: Floral developmental studies are crucial for understanding the evolution of floral structures and sexual systems in angiosperms. Within the monocot order Poales, both subfamilies of Eriocaulaceae have unisexual flowers bearing unusual nectaries. Few previous studies have investigated floral development in subfamily Eriocauloideae, which includes the large, diverse and widespread genus Eriocaulon. To understand floral variation and the evolution of the androecium, gynoecium and floral nectaries of Eriocaulaceae, we analysed floral development and vasculature in Eriocaulon and compared it with that of subfamily Paepalanthoideae and the related family Xyridaceae in a phylogenetic context. METHODS: Thirteen species of Eriocaulon were studied. Developmental analysis was carried out using scanning electron microscopy, and vasculature analysis was carried out using light microscopy. Fresh material was also analysed using scanning electron microscopy with a cryo function. Character evolution was reconstructed over well-resolved phylogenies. KEY RESULTS: Perianth reductions can occur due to delayed development that can also result in loss of the vascular bundles of the median sepals. Nectariferous petal glands cease development and remain vestigial in some species. In staminate flowers, the inner stamens can emerge before the outer ones, and carpels are transformed into nectariferous carpellodes. In pistillate flowers, stamens are reduced to staminodes and the gynoecium has dorsal stigmas. CONCLUSIONS: Floral morphology is highly diverse in Eriocaulon, as a result of fusion, reduction or loss of perianth parts. The nectariferous carpellodes of staminate flowers originated first in the ancestor of Eriocaulaceae; petal glands and nectariferous branches of pistillate flowers originated independently in Eriocaulaceae through transfer of function. We present a hypothesis of floral evolution for the family, illustrating a shift from bisexuality to unisexuality and the evolution of nectaries in a complex monocot family, which can contribute to future studies on reproductive biology and floral evolution in other groups.
Assuntos
Eriocaulaceae , Magnoliopsida , Flores , Microscopia Eletrônica de Varredura , FilogeniaRESUMO
Plants sometimes suffer mechanical injury. The nonlethal collapse of a flowering stalk, for example, can greatly reduce plant fitness if it leads to 'incorrect' floral orientation and thus reduced visitation or poor pollination. When floral orientation is important for accurate pollination, as has been suggested for bilaterally symmetrical flowers, we predict that such flowers should have developmental and/or behavioural mechanisms for restoring 'correct' orientation after accidents. We made observations and conducted experiments on 23 native and cultivated flowering plant species in Australia, South America, North America and Europe. We found that flowers with bilateral symmetry usually have the capacity to reorient after accidents, and that this is manifested through rapid bending and/or rotation of pedicels or sexual organs or slower peduncle bending. Floral reorientation restores pollination accuracy and fit with pollinators. However, experimental floral misorientation in eight species with radially symmetrical flowers showed that, with one exception, they had little capacity to reorient their flowers, in line with expectations that the orientation of radially symmetrical flowers does not substantially affect pollination accuracy. Our results suggest that quick corrective reorientation of bilaterally symmetrical flowers is adaptive, highlighting a little-studied aspect of plant-pollinator interactions and plant evolution.
Assuntos
Flores , Polinização , Acidentes , Austrália , Europa (Continente) , América do Norte , América do SulRESUMO
PREMISE OF THE STUDY: Although the ovary position is considered a stable character in angiosperms, Melastomataceae species have perigynous flowers in which the ovary varies from superior to inferior. Thus, we investigated the ontogenetic process involved in variation of the ovary position in Melastomataceae. We focused on histogenesis of the floral apex in search of developmental patterns for each type of ovary position. METHODS: Six species in which the ovary varies from superior to inferior were chosen: Henriettea saldanhae, Leandra melastomoides, Miconia dodecandra, Microlicia euphorbioides, Rhynchanthera grandiflora, and Tibouchina clinopodifolia. Buds and flowers were processed for surface and histological examinations. KEY RESULTS: The floral apex changes from convex to concave, resulting in a perigynous hypanthium. Cell divisions in the margins of the floral apex form an annular intercalary meristem that elevates the base of the primordia of almost all whorls. The joint growth of the carpel base with the gynoecial hypanthium originates semi-inferior ovaries in Leandra melastomoides, Miconia dodecandra, and Tibouchina clinopodifolia and inferior ovaries in Henriettea saldanhae. In Microlicia euphorbioides and Rhynchanthera grandiflora, the carpels are not affected by this hypanthial growth; flowers have a superior ovary. CONCLUSIONS: Changes in ovary position of Melastomataceae are due to intercalary meristematic activity, which is one of the main mechanisms for the origin of morphological innovations among plants. Our data illustrate the importance of the intercalary meristems in floral development, and we discuss the implications of this ontogenetic model for understanding the evolution of ovary position in Melastomataceae.
RESUMO
PREMISE OF THE STUDY: Apocarpy (i.e., free carpels) is considered to be the basal condition for ovary development in angiosperms. Yet it only occurs in 10% of angiosperm species, of which another 10% are monocarpellate. Most legume flowers are monocarpellate. Species with polycarpellate gynoecia occur in about 15 genera with most representatives in Mimosoideae. In the present study, we analyze legumes with polycarpellate flowers with the aim of improving our understanding of gynoecium evolution. METHODS: Flowers of nine legume species from five genera were analyzed using a scanning electron microscope (SEM). KEY RESULTS: In Leguminosae, carpels usually form as individual primordia or protuberances. Inga congesta differs slightly from this pattern in that the central apex bulges outward before the formation of individual carpel primordia. While legumes usually develop entirely plicate carpels, flowers of Acacia celastrifolia and Inga bella show an intermediate type of carpel morphology with a distal plicate zone and a small proximal ascidiate zone. Carpels in Inga congesta and Archidendron glabrum are sometimes slightly fused at the ovary base. The orientation of carpel clefts seems to reflect the floral symmetry. They are directed to the floral center in mimosoids and caesalpinioids, whereas in Swartzia dipetala carpel clefts are oriented to the adaxial side. CONCLUSIONS: Polycarpelly arose at least seven times independently in Leguminosae. The polycarpellate condition appears to be correlated with polyandry, and in most instances, it is accompanied by a profound change in floral organization from a closed to an open system.