RESUMO
Este estudo objetivou comparar modelos para estimação dos componentes de variância e parâmetros genéticos, utilizando amostragem de Gibbs, com relação à inclusão de diferentes efeitos aleatórios, em características de desempenho ponderal de caprinos da raça Anglonubiana, pertencentes ao rebanho da Empresa Estadual de Pesquisa Agropecuária da Paraíba (EMEPA). Os componentes de (co)variância e parâmetros genéticos, para fins de comparação, sob quatro modelos animal com diferentes efeitos aleatórios, foram estimados por meio do aplicativo GIBBS1F90, adotando-se cadeias de 1.000.000 de iterações, burn-in de 200.000 e intervalo de amostragem a cada 250 iterações. Adotou-se prioris não-informativas em todos os modelos. Verificou-se co-variâncias negativas entre os efeitos genético aditivo direto e aditivo materno para todos os pesos. O efeito de ambiente permanente materno é uma importante fonte de variação para as características de desempenho em caprinos até os 196 dias, devendo ser considerado nos modelos de avaliação genética a fim de obter-se predições acuradas dos valores genéticos dos indivíduos. A importância da inclusão do efeito aditivo materno parece ser mais dependente da estrutura do conjunto de dados sob avaliação. Diante da estrutura dos dados, do manejo descrito e dos critérios de escolha do melhor modelo (Critério de Informação da Deviance e fator de Bayes), deve-se fazer a estimação dos parâmetros para os pesos ao nascimento, aos 28 e aos 56 dias utilizando-se o modelo IV, uma vez que forneceu resultados mais consistentes do que o modelo I (menos complexo), sem a necessidade de representações precisas do conhecimento anterior à coleta de dados. Com o passar do tempo, o programa de melhoramento irá possuir maior volume de dados e, assim, aumentará a possibilidade de construção de uma distribuição a priori confiante, que possa permitir a inferência dos parâmetros por modelos mais complexos. Contudo, é preferível a estimação dos componentes para as características, pesos aos 112, aos 140 e aos 196 dias, utilizando-se o modelo I (menos complexo)
Assuntos
Animais , Modelos Genéticos , Teorema de BayesRESUMO
O equilíbrio de Hardy-Weinberg é um dos principais assuntos estudados pela Genética de populações. Neste contexto, o presente trabalho aborda a análise e a comparação bayesiana de modelos utilizando o coeficiente de desequilíbrio (D A). Para isso, realizou-se um estudo de simulação no qual as seguintes distribuições a priori foram consideradas: Dirichlet (modelo 1); beta - função degrau uniforme (modelo 2); uniforme - função degrau uniforme (modelo 3); e as prioris independentes uniformes (modelo 4). Exemplos de aplicação a dados reais de grupos raciais também são apresentados e discutidos. As amostras das distribuições marginais a posteriori para os parâmetros de interesse foram obtidas mediante o algoritmo Metropolis-Hastings, o qual foi implementado no software livre R. A convergência das cadeias geradas por este algoritmo foi monitorada pelos critérios de Geweke e Gelman & Rubin, os quais estão implementados no pacote BOA do R. Quanto às comparações entre os modelos, efetuadas por meio do fator de Bayes, observa-se que, para os dados simulados, o modelo 4 é o mais indicado para os casos de D A=0,146, D A=0,02 e D A=-0,02 com n=200; o modelo 2 é o mais indicado para D A=-0,02 e n=50 e o modelo 3 é o mais indicado para D A=-0,02 e n=1000. Para os dados reais, em cada caso analisado, nota-se uma grande diferenciação na escolha de modelos, em que apenas o modelo 1 não é recomendado.
One of the main subjects studied by population genetics is the Hardy-Weinberg equilibrium. In this context, this paper addresses the analysis and comparison of bayesian models used in its evaluation by the coefficient of disequilibrium. For this, it was carried out a simulation study in which the following prior distributions were considered: Dirichlet (model 1), beta - uniform step function (model 2), uniform - uniform step function (model 3) and independent uniform priors (model 4). Examples of application to real data for racial groups are presented and discussed. Samples from the marginal posterior distributions for parameters of interest were obtained by Metropolis-Hastings algorithm, which was implemented in the software R. The convergence of the chains generated by this algorithm was monitored by criteria of Geweke and Gelman & Rubin, which are implemented in the BOA package R. Regarding comparisons between models, performed using the Bayes factor, it was observed that model 4 is the most suitable for the cases of D A=0.146, D A=0.02 and D A=-0.02 with n=200, the model 2 is the most suitable for D A=-0.02 with n=50 and the model 3 is the most suitable for D A=-0.02 and n=1000. For real data, in each case examined, there is a large difference in choice of models, where model 1 is the only one not recommended.
RESUMO
One of the main subjects studied by population genetics is the Hardy-Weinberg equilibrium. In this context, this paper addresses the analysis and comparison of bayesian models used in its evaluation by the coefficient of disequilibrium. For this, it was carried out a simulation study in which the following prior distributions were considered: Dirichlet (model 1), beta - uniform step function (model 2), uniform - uniform step function (model 3) and independent uniform priors (model 4). Examples of application to real data for racial groups are presented and discussed. Samples from the marginal posterior distributions for parameters of interest were obtained by Metropolis-Hastings algorithm, which was implemented in the software R. The convergence of the chains generated by this algorithm was monitored by criteria of Geweke and Gelman & Rubin, which are implemented in the BOA package R. Regarding comparisons between models, performed using the Bayes factor, it was observed that model 4 is the most suitable for the cases of D A=0.146, D A=0.02 and D A=-0.02 with n=200, the model 2 is the most suitable for D A=-0.02 with n=50 and the model 3 is the most suitable for D A=-0.02 and n=1000. For real data, in each case examined, there is a large difference in choice of models, where model 1 is the only one not recommended.
O equilíbrio de Hardy-Weinberg é um dos principais assuntos estudados pela Genética de populações. Neste contexto, o presente trabalho aborda a análise e a comparação bayesiana de modelos utilizando o coeficiente de desequilíbrio (D A). Para isso, realizou-se um estudo de simulação no qual as seguintes distribuições a priori foram consideradas: Dirichlet (modelo 1); beta - função degrau uniforme (modelo 2); uniforme - função degrau uniforme (modelo 3); e as prioris independentes uniformes (modelo 4). Exemplos de aplicação a dados reais de grupos raciais também são apresentados e discutidos. As amostras das distribuições marginais a posteriori para os parâmetros de interesse foram obtidas mediante o algoritmo Metropolis-Hastings, o qual foi implementado no software livre R. A convergência das cadeias geradas por este algoritmo foi monitorada pelos critérios de Geweke e Gelman & Rubin, os quais estão implementados no pacote BOA do R. Quanto às comparações entre os modelos, efetuadas por meio do fator de Bayes, observa-se que, para os dados simulados, o modelo 4 é o mais indicado para os casos de D A=0,146, D A=0,02 e D A=-0,02 com n=200; o modelo 2 é o mais indicado para D A=-0,02 e n=50 e o modelo 3 é o mais indicado para D A=-0,02 e n=1000. Para os dados reais, em cada caso analisado, nota-se uma grande diferenciação na escolha de modelos, em que apenas o modelo 1 não é recomendado.
RESUMO
One of the main subjects studied by population genetics is the Hardy-Weinberg equilibrium. In this context, this paper addresses the analysis and comparison of bayesian models used in its evaluation by the coefficient of disequilibrium. For this, it was carried out a simulation study in which the following prior distributions were considered: Dirichlet (model 1), beta - uniform step function (model 2), uniform - uniform step function (model 3) and independent uniform priors (model 4). Examples of application to real data for racial groups are presented and discussed. Samples from the marginal posterior distributions for parameters of interest were obtained by Metropolis-Hastings algorithm, which was implemented in the software R. The convergence of the chains generated by this algorithm was monitored by criteria of Geweke and Gelman & Rubin, which are implemented in the BOA package R. Regarding comparisons between models, performed using the Bayes factor, it was observed that model 4 is the most suitable for the cases of D A=0.146, D A=0.02 and D A=-0.02 with n=200, the model 2 is the most suitable for D A=-0.02 with n=50 and the model 3 is the most suitable for D A=-0.02 and n=1000. For real data, in each case examined, there is a large difference in choice of models, where model 1 is the only one not recommended.
O equilíbrio de Hardy-Weinberg é um dos principais assuntos estudados pela Genética de populações. Neste contexto, o presente trabalho aborda a análise e a comparação bayesiana de modelos utilizando o coeficiente de desequilíbrio (D A). Para isso, realizou-se um estudo de simulação no qual as seguintes distribuições a priori foram consideradas: Dirichlet (modelo 1); beta - função degrau uniforme (modelo 2); uniforme - função degrau uniforme (modelo 3); e as prioris independentes uniformes (modelo 4). Exemplos de aplicação a dados reais de grupos raciais também são apresentados e discutidos. As amostras das distribuições marginais a posteriori para os parâmetros de interesse foram obtidas mediante o algoritmo Metropolis-Hastings, o qual foi implementado no software livre R. A convergência das cadeias geradas por este algoritmo foi monitorada pelos critérios de Geweke e Gelman & Rubin, os quais estão implementados no pacote BOA do R. Quanto às comparações entre os modelos, efetuadas por meio do fator de Bayes, observa-se que, para os dados simulados, o modelo 4 é o mais indicado para os casos de D A=0,146, D A=0,02 e D A=-0,02 com n=200; o modelo 2 é o mais indicado para D A=-0,02 e n=50 e o modelo 3 é o mais indicado para D A=-0,02 e n=1000. Para os dados reais, em cada caso analisado, nota-se uma grande diferenciação na escolha de modelos, em que apenas o modelo 1 não é recomendado.
RESUMO
Este trabalho tem como objetivo realizar uma análise bayesiana de modelos, por meio do fator de Bayes, para o desequilíbrio de Hardy-Weinberg. Pretende-se também testar a metodologia por meio da simulação de dados e aplicá-la a um conjunto de dados reais. Na definição dos modelos, utilizaram-se as prioris Dirichlet (modelo 1), Beta - função degrau Uniforme (modelo 2), Uniforme - função degrau Uniforme (modelo 3) e as prioris independentes Uniformes (modelo 4) relacionadas aos parâmetros coeficiente de endogamia e proporção alélica. Foi implementado um algoritmo no software livre R para realizar a amostragem pelo Metropolis-Hastings das distribuições condicionais a posteriori dos parâmetros dos modelos. A convergência das cadeias foram monitoradas por meio de procedimentos implementados no pacote BOA do software livre R. As comparações entre os modelos indicaram que o mais adequado, ou seja, o que melhor descreve o fenômeno em estudo, é o modelo 1, em comparação aos demais, tanto para os dados simulados, quanto para os dados reais. Em virtude dos resultados apresentados, pode-se atestar que a abordagem Bayesiana apresentou bons resultados, ou seja, por meio das distribuições a posteriori condicionais completas, foram verificadas a confiabilidade e a precisão da metodologia na comparação dos modelos.
The aim of this research is to perform a Bayesian characterization of the Hardy-Weinberg disequilibrium through the Bayes factor. The methodology is tested by using both simulation study and actual data. It was used the following priors for the Bayesian models: Dirichlet (model 1), beta - step uniform function (model 2), uniform - step uniform function (model 3) and independent uniforms for the inbreeding coefficients and allele frequencies (model 4). Metropolis-Hasting algorithms were implemented using the software R to simulate multiple draws from the posterior distribution. Convergence of the Metropolis-Hasting algorithms was assessed by many methods available at R package BOA. Results showed that the model 1 presents the best performance for both simulation study and actual data. The results also showed that the Bayesian approach provides models that are useful for the analysis of the Hardy-Weinberg disequilibrium and inbreeding coefficient.
RESUMO
The aim of this research is to perform a Bayesian characterization of the Hardy-Weinberg disequilibrium through the Bayes factor. The methodology is tested by using both simulation study and actual data. It was used the following priors for the Bayesian models: Dirichlet (model 1), beta - step uniform function (model 2), uniform - step uniform function (model 3) and independent uniforms for the inbreeding coefficients and allele frequencies (model 4). Metropolis-Hasting algorithms were implemented using the software R to simulate multiple draws from the posterior distribution. Convergence of the Metropolis-Hasting algorithms was assessed by many methods available at R package BOA. Results showed that the model 1 presents the best performance for both simulation study and actual data. The results also showed that the Bayesian approach provides models that are useful for the analysis of the Hardy-Weinberg disequilibrium and inbreeding coefficient.
Este trabalho tem como objetivo realizar uma análise bayesiana de modelos, por meio do fator de Bayes, para o desequilíbrio de Hardy-Weinberg. Pretende-se também testar a metodologia por meio da simulação de dados e aplicá-la a um conjunto de dados reais. Na definição dos modelos, utilizaram-se as prioris Dirichlet (modelo 1), Beta - função degrau Uniforme (modelo 2), Uniforme - função degrau Uniforme (modelo 3) e as prioris independentes Uniformes (modelo 4) relacionadas aos parâmetros coeficiente de endogamia e proporção alélica. Foi implementado um algoritmo no software livre R para realizar a amostragem pelo Metropolis-Hastings das distribuições condicionais a posteriori dos parâmetros dos modelos. A convergência das cadeias foram monitoradas por meio de procedimentos implementados no pacote BOA do software livre R. As comparações entre os modelos indicaram que o mais adequado, ou seja, o que melhor descreve o fenômeno em estudo, é o modelo 1, em comparação aos demais, tanto para os dados simulados, quanto para os dados reais. Em virtude dos resultados apresentados, pode-se atestar que a abordagem Bayesiana apresentou bons resultados, ou seja, por meio das distribuições a posteriori condicionais completas, foram verificadas a confiabilidade e a precisão da metodologia na comparação dos modelos.
RESUMO
The aim of this research is to perform a Bayesian characterization of the Hardy-Weinberg disequilibrium through the Bayes factor. The methodology is tested by using both simulation study and actual data. It was used the following priors for the Bayesian models: Dirichlet (model 1), beta - step uniform function (model 2), uniform - step uniform function (model 3) and independent uniforms for the inbreeding coefficients and allele frequencies (model 4). Metropolis-Hasting algorithms were implemented using the software R to simulate multiple draws from the posterior distribution. Convergence of the Metropolis-Hasting algorithms was assessed by many methods available at R package BOA. Results showed that the model 1 presents the best performance for both simulation study and actual data. The results also showed that the Bayesian approach provides models that are useful for the analysis of the Hardy-Weinberg disequilibrium and inbreeding coefficient.
Este trabalho tem como objetivo realizar uma análise bayesiana de modelos, por meio do fator de Bayes, para o desequilíbrio de Hardy-Weinberg. Pretende-se também testar a metodologia por meio da simulação de dados e aplicá-la a um conjunto de dados reais. Na definição dos modelos, utilizaram-se as prioris Dirichlet (modelo 1), Beta - função degrau Uniforme (modelo 2), Uniforme - função degrau Uniforme (modelo 3) e as prioris independentes Uniformes (modelo 4) relacionadas aos parâmetros coeficiente de endogamia e proporção alélica. Foi implementado um algoritmo no software livre R para realizar a amostragem pelo Metropolis-Hastings das distribuições condicionais a posteriori dos parâmetros dos modelos. A convergência das cadeias foram monitoradas por meio de procedimentos implementados no pacote BOA do software livre R. As comparações entre os modelos indicaram que o mais adequado, ou seja, o que melhor descreve o fenômeno em estudo, é o modelo 1, em comparação aos demais, tanto para os dados simulados, quanto para os dados reais. Em virtude dos resultados apresentados, pode-se atestar que a abordagem Bayesiana apresentou bons resultados, ou seja, por meio das distribuições a posteriori condicionais completas, foram verificadas a confiabilidade e a precisão da metodologia na comparação dos modelos.
RESUMO
Neste trabalho, desenvolveu-se uma abordagem bayesiana para predizer as quantidades de nitrogênio mineralizados por intermédio de modelos não lineares. Os modelos não lineares considerados para avaliar a dinâmica da mineralização do nitrogênio e para ilustrar o procedimento bayesiano foram: modelo de Cabrera, Marion, Stanford e Smith. A comparação dos modelos foi feita por meio do Fator de Bayes (FB) e do Critério de Informação Bayesiano (BIC). A inferência sobre os parâmetros realizou-se por intermédio do Amostrador de Gibbs e do Metropolis Hastings. O modelo de Cabrera (1993) foi o que proporcionou melhor qualidade de ajuste ao conjunto de dados de mineralização de nitrogênio, sendo seguido pelo modelo de Stanford & Smith (1972) e, por último, o de Marion et al. (1981).
In this work one developed a Bayesian approach to predict the amount of mineralized nitrogen through nonlinear models. The nonlinear models considered to evaluate the mineralization of organic nitrogen and to illustrate the Bayesian procedure were: models of Cabrera, Marion, Stanford and Smith. The comparison of the models was promoted through the Bayes Factor (FB) and Bayes Information Criterion (BIC). Inference on the parameters was carried out through the Gibbs Sampling and Metropolis Hastings. The model that provided better adjustment quality to the group of data was Cabrera's model (1993), followed by the model of Stanford & Smith (1972) and the last one by Marion et al. (1981).