Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 145: 105472, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35430558

RESUMO

Although for many diseases there is a progressive diagnosis scale, automatic analysis of grade-based medical images is quite often addressed as a binary classification problem, missing the finer distinction and intrinsic relation between the different possible stages or grades. Ordinal regression (or classification) considers the order of the values of the categorical labels and thus takes into account the order of grading scales used to assess the severity of different medical conditions. This paper presents a quantum-inspired deep probabilistic learning ordinal regression model for medical image diagnosis that takes advantage of the representational power of deep learning and the intrinsic ordinal information of disease stages. The method is evaluated on two different medical image analysis tasks: prostate cancer diagnosis and diabetic retinopathy grade estimation on eye fundus images. The experimental results show that the proposed method not only improves the diagnosis performance on the two tasks but also the interpretability of the results by quantifying the uncertainty of the predictions in comparison to conventional deep classification and regression architectures. The code and datasets are available at https://github.com/stoledoc/DQOR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Neoplasias da Próstata , Retinopatia Diabética/diagnóstico por imagem , Fundo de Olho , Humanos , Masculino , Próstata , Neoplasias da Próstata/diagnóstico por imagem , Incerteza
2.
Diagnostics (Basel) ; 11(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34441257

RESUMO

The objective of this work is to perform image quality assessment (IQA) of eye fundus images in the context of digital fundoscopy with topological data analysis (TDA) and machine learning methods. Eye health remains inaccessible for a large amount of the global population. Digital tools that automize the eye exam could be used to address this issue. IQA is a fundamental step in digital fundoscopy for clinical applications; it is one of the first steps in the preprocessing stages of computer-aided diagnosis (CAD) systems using eye fundus images. Images from the EyePACS dataset were used, and quality labels from previous works in the literature were selected. Cubical complexes were used to represent the images; the grayscale version was, then, used to calculate a persistent homology on the simplex and represented with persistence diagrams. Then, 30 vectorized topological descriptors were calculated from each image and used as input to a classification algorithm. Six different algorithms were tested for this study (SVM, decision tree, k-NN, random forest, logistic regression (LoGit), MLP). LoGit was selected and used for the classification of all images, given the low computational cost it carries. Performance results on the validation subset showed a global accuracy of 0.932, precision of 0.912 for label "quality" and 0.952 for label "no quality", recall of 0.932 for label "quality" and 0.912 for label "no quality", AUC of 0.980, F1 score of 0.932, and a Matthews correlation coefficient of 0.864. This work offers evidence for the use of topological methods for the process of quality assessment of eye fundus images, where a relatively small vector of characteristics (30 in this case) can enclose enough information for an algorithm to yield classification results useful in the clinical settings of a digital fundoscopy pipeline for CAD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA