Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anat Histol Embryol ; 52(1): 101-114, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36317584

RESUMO

Educational technologies in veterinary medicine aim to train veterinarians faster and improve clinical outcomes. COVID-19 pandemic, shifted face-to-face teaching to online, thus, the need to provide effective education remotely was exacerbated. Among recent technology advances for veterinary medical education, extended reality (XR) is a promising teaching tool. This study aimed to develop a case resolution approach for radiographic anatomy studies using XR technology and assess students' achievement of differential diagnostic skills. Learning objectives based on Bloom's taxonomy keywords were used to develop four clinical cases (3 dogs/1 cat) of spinal injuries utilizing CT scans and XR models and presented to 22 third-year veterinary medicine students. Quantitative assessment (ASMT) of 7 questions probing 'memorization', 'understanding and application', 'analysis' and 'evaluation' was given before and after contact with XR technology as well as qualitative feedback via a survey. Mean ASMT scores increased during case resolution (pre 51.6% (±37%)/post 60.1% (± 34%); p < 0.01), but without significant difference between cases (Kruskal-Wallis H = 2.18, NS). Learning objectives were examined for six questions (Q1-Q6) across cases (C1-4): Memorization improved sequentially (Q1, 2 8/8), while Understanding and Application (Q3,4) showed the greatest improvement (26.7%-76.9%). Evaluation and Analysis (Q5,6) was somewhat mixed, improving (5/8), no change (3/8) and declining (1/8).Positive student perceptions suggest that case studies' online delivery was well received stimulating learning in diagnostic imaging and anatomy while developing visual-spatial skills that aid understanding cross-sectional images. Therefore, XR technology could be a useful approach to complement radiological instruction in veterinary medicine.


Assuntos
Doenças do Gato , Doenças do Cão , Educação a Distância , Educação em Veterinária , Estudantes de Medicina , Animais , Cães , Humanos , COVID-19/epidemiologia , Doenças do Cão/diagnóstico por imagem , Aprendizagem , Pandemias , Tomografia Computadorizada por Raios X/veterinária , Doenças do Gato/diagnóstico por imagem , Educação em Veterinária/organização & administração , Estudantes de Medicina/psicologia , Educação a Distância/organização & administração , Avaliação Educacional
2.
Artigo em Inglês | MEDLINE | ID: mdl-36429990

RESUMO

The construction industry has high accident rates. The sector is exploring various tools to improve safety management, training, and awareness to achieve zero accidents. This work focuses on extended reality (XR), which encompasses virtual reality (VR), augmented reality (AR), and mixed reality (MR) technologies. Several authors have developed training experiences for construction safety in XR environments with positive conclusions about their effectiveness. However, there is no standardization regarding the evaluation methods used in the sector, and many experiences do not use any method. This lack is critical, as whenever the aim is to evaluate the degree of awareness of security issues, the implementation of evaluation systems is indispensable to make known the methods used in the literature to evaluate the effectiveness of the experiences and represent support for future research. This research identifies developments in XR experiences and analyzes the validation methods through a systematic review using the PRISMA methodology. It identifies two evaluation methods, objective and subjective, which are each broken down into four categories. The results show the types of evaluation, safety-related purposes, and safety application objectives used by the database classification.


Assuntos
Realidade Aumentada , Indústria da Construção , Realidade Virtual , Indústria da Construção/educação , Gestão da Segurança
3.
Anat Sci Educ ; 15(2): 403-419, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34664384

RESUMO

The consolidation of technology as an alternative strategy to cadaveric dissection for teaching anatomy in medical courses was accelerated by the recent Covid-19 pandemic, which caused the need for social distance policies and the closure of laboratories and classrooms. Consequently, new technologies were created, and those already been developed started to be better explored. However, information about many of these instruments and resources is not available to anatomy teachers. This systematic review presents the technological means for teaching and learning about human anatomy developed and applied in medical courses in the last ten years, besides the infrastructure necessary to use them. Studies in English, Portuguese, and Spanish were searched in MEDLINE, Scopus, ERIC, LILACS, and SciELO databases, initially resulting in a total of 875 identified articles, from which 102 were included in the analysis. They were classified according to the type of technology used: three-dimensional (3D) printing (n = 22), extended reality (n = 49), digital tools (n = 23), and other technological resources (n = 8). It was made a detailed description of technologies, including the stage of the medical curriculum in which it was applied, the infrastructure utilized, and which contents were covered. The analysis shows that between all technologies, those related to the internet and 3D printing are the most applicable, both in student learning and the financial cost necessary for its structural implementation.


Assuntos
Anatomia , COVID-19 , Estudantes de Medicina , Anatomia/educação , Currículo , Humanos , Pandemias , SARS-CoV-2 , Ensino , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA