Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Epidemiol Infect ; 147: e52, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30474578

RESUMO

Zika virus (ZIKV) is an arbovirus transmitted mainly by Aedes aegypti mosquitoes. Recent scientific evidence on Culex quinquefasciatus has suggested its potential as a vector for ZIKV, which may change the current risk zones. We aimed to quantify the world population potentially exposed to ZIKV in a spatially explicit way, considering the primary vector (A. aegypti) and the potential vector (C. quinquefasciatus). Our model combined species distribution modelling of mosquito species with spatially explicit human population data to estimate ZIKV exposure risk. We estimated the potential global distribution of C. quinquefasciatus and estimated its potential interaction zones with A. aegypti. Then we evaluated the risk zones for ZIKV considering both vectors. Finally, we quantified and compared the people under risk associated with each vector by risk level, country and continent. We found that C. quinquefasciatus had a more temperate distribution until 42° in both hemispheres, while the risk involving A. aegypti is concentrated mainly in tropical latitudes until 35° in both hemispheres. Globally, 4.2 billion people are under risk associated with ZIKV. Around 2.6 billon people are under very high risk associated with C. quinquefasciatus and 1 billion people associated with A. aegypti. Several countries could be exposed to ZIKV, which emphasises the need to clarify the competence of C. quinquefasciatus as a potential vector as soon as possible. The models presented here represent a tool for risk management, public health planning, mosquito control and preventive actions, especially to focus efforts on the most affected areas.

2.
Int J Epidemiol ; 46(3): 966-975, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338754

RESUMO

Background: Zika virus is an emerging Flaviviridae virus, which has spread rapidly in the last few years. It has raised concern because it has been associated with fetus microcephaly when pregnant women are infected. The main vector is the mosquito Aedes aegypti , distributed in tropical areas. Methods: Niche modelling techniques were used to estimate the potential distribution area of A. aegypti. This was overlapped with human population density, determining areas of potential transmission risk worldwide. Afterwards, we quantified the population at risk according to risk level. Results: The vector transmission risk is distributed mainly in Asia and Oceania on the shores of the Indian Ocean. In America, the risk concentrates in the Atlantic coast of South America and in the Caribbean Sea shores in Central and North America. In Africa, the major risk is concentrated in the Pacific and Atlantic coasts of Central and South Africa. The world population under high and very high risk levels includes 2.261 billion people. Conclusions: These results illustrate Zika virus risk at the global level and provide maps to target the prevention and control measures especially in areas with higher risk, in countries with less sanitation and poorer resources. Many countries without previous vector reports could become active transmission zones in the future, so vector surveillance should be implemented or reinforced in these areas.


Assuntos
Modelos de Interação Espacial , Densidade Demográfica , Infecção por Zika virus/epidemiologia , Aedes/virologia , Animais , Saúde Global , Humanos , Mosquitos Vetores/virologia , Medição de Risco , Zika virus , Infecção por Zika virus/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA