Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 10: e14196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299507

RESUMO

Background: An ontogenetic niche shift in vertebrates is a common occurrence where ecology shifts with morphological changes throughout growth. How ecology shifts over a vertebrate's lifetime is often reconstructed in extant species-by combining observational and skeletal data from growth series of the same species-because interactions between organisms and their environment can be observed directly. However, reconstructing shifts using extinct vertebrates is difficult and requires well-sampled growth series, specimens with relatively complete preservation, and easily observable skeletal traits associated with ecologies suspected to change throughout growth, such as diet. Methods: To reconstruct ecological changes throughout the growth of a stem-mammal, we describe changes associated with dietary ecology in a growth series of crania of the large-bodied (∼2 m in length) and herbivorous form, Exaeretodon argentinus (Cynodontia: Traversodontidae) from the Late Triassic Ischigualasto Formation, San Juan, Argentina. Nearly all specimens were deformed by taphonomic processes, so we reconstructed allometric slope using a generalized linear mixed effects model with distortion as a random effect. Results: Under a mixed effects model, we find that throughout growth, E. argentinus reduced the relative length of the palate, postcanine series, orbits, and basicranium, and expanded the relative length of the temporal region and the height of the zygomatic arch. The allometric relationship between the zygomatic arch and temporal region with the total length of the skull approximate the rate of growth for feeding musculature. Based on a higher allometric slope, the zygoma height is growing relatively faster than the length of the temporal region. The higher rate of change in the zygoma may suggest that smaller individuals had a crushing-dominated feeding style that transitioned into a chewing-dominated feeding style in larger individuals, suggesting a dietary shift from possible faunivory to a more plant-dominated diet. Dietary differentiation throughout development is further supported by an increase in sutural complexity and a shift in the orientation of microwear anisotropy between small and large individuals of E. argentinus. A developmental transition in the feeding ecology of E. argentinus is reflective of the reconstructed dietary transition across Gomphodontia, wherein the earliest-diverging species are inferred as omnivorous and the well-nested traversodontids are inferred as herbivorous, potentially suggesting that faunivory in immature individuals of the herbivorous Traversodontidae may be plesiomorphic for the clade.


Assuntos
Cabeça , Crânio , Animais , Dieta , Mamíferos , Mastigação , Crânio/anatomia & histologia , Vertebrados
2.
J Morphol ; 280(9): 1267-1281, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31241801

RESUMO

The brain endocasts of the late Triassic (Carnian) traversodontids (Eucynodontia: Gomphodontia) Siriusgnathus niemeyerorum and Exaeretodon riograndensis from southern Brazil are described based on virtual models generated using computed tomography scan data. Their skull anatomy resembles that of other non-mammaliaform cynodonts, showing an endocranial cavity that is not fully ossified. A "V-shaped" orbitosphenoid, neither fully developed nor ossified is present in E. riograndensis. The nasal cavity is confluent with the encephalic cavity. Thus, the anterior limit of the olfactory bulbs is not definite. The brain endocast is elongated, being narrow anteriorly and wide posteriorly, with the maximum width at the parafloccular cast. The olfactory bulbs do not present a clear division between their counterparts, due to the absence of a longitudinal sulcus. A longitudinal sulcus in the forebrain delimiting the cerebral hemispheres, the pineal tube, and the parietal foramen are absent in both taxa. The large and well-developed unossified zone is partially separated from the remaining endocast by a notch formed by the supraoccipital. The encephalization quotients, as well as the endocranial volume/body mass relationships of S. niemeyerorum and E. riograndensis are within the range expected for non-mammaliaform Therapsida.


Assuntos
Cordados/anatomia & histologia , Fósseis , Processamento de Imagem Assistida por Computador , Crânio/anatomia & histologia , Animais , Peso Corporal , Encéfalo/anatomia & histologia , Brasil , Imageamento Tridimensional , Bulbo Olfatório/anatomia & histologia , Fatores de Tempo , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA