Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 27(4): 768-780, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33151018

RESUMO

Climate change is drastically changing the timing of biological events across the globe. Changes in the phenology of seasonal migrations between the breeding and wintering grounds have been observed across biological taxa, including birds, mammals, and insects. For birds, strong links have been shown between changes in migration phenology and changes in weather conditions at the wintering, stopover, and breeding areas. For other animal taxa, the current understanding of, and evidence for, climate (change) influences on migration still remains rather limited, mainly due to the lack of long-term phenology datasets. Bracken Cave in Texas (USA) holds one of the largest bat colonies of the world. Using weather radar data, a unique 23-year (1995-2017) long time series was recently produced of the spring and autumn migration phenology of Brazilian free-tailed bats (Tadarida brasiliensis) at Bracken Cave. Here, we analyse these migration phenology time series in combination with gridded temperature, precipitation, and wind data across Mexico and southern USA, to identify the climatic drivers of (changes in) bat migration phenology. Perhaps surprisingly, our extensive spatiotemporal search did not find temperature to influence either spring or autumn migration. Instead, spring migration phenology seems to be predominantly driven by wind conditions at likely wintering or spring stopover areas during the migration period. Autumn migration phenology, on the other hand, seems to be dominated by precipitation to the east and north-east of Bracken Cave. Long-term changes towards more frequent migration and favourable wind conditions have, furthermore, allowed spring migration to occur 16 days earlier. Our results illustrate how some of the remaining knowledge gaps on the influence of climate (change) on bat migration and abundance can be addressed using weather radar analyses.


Assuntos
Migração Animal , Quirópteros , Animais , Mudança Climática , México , Estações do Ano , Texas , Tempo (Meteorologia)
2.
J Fish Biol ; 96(1): 202-216, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31729023

RESUMO

In South America, the order Atheriniformes includes the monophyletic genus Odontesthes with 20 species that inhabit freshwater, estuarine and coastal environments. Pejerrey Odontesthes argentinensis is widely distributed in coastal and estuarine areas of the Atlantic Ocean and is known to foray into estuaries of river systems, particularly in conditions of elevated salinity. However, to our knowledge, a landlocked self-sustaining population has never been recorded. In this study, we examined the pejerrey population of Salada de Pedro Luro Lake (south-east of Buenos Aires Province, Argentina) to clarify its taxonomic identity. An integrative taxonomic analysis based on traditional meristic, landmark-based morphometrics and genetic techniques suggests that the Salada de Pedro Luro pejerrey population represents a novel case of physiological and morphological adaptation of a marine pejerrey species to a landlocked environment and emphasises the environmental plasticity of this group of fishes.


Assuntos
Adaptação Fisiológica/fisiologia , Peixes/fisiologia , Adaptação Fisiológica/genética , Animais , Organismos Aquáticos/fisiologia , Argentina , Oceano Atlântico , Classificação , Estuários , Peixes/classificação , Peixes/genética , Água Doce , Genética Populacional , Tolerância ao Sal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA