Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 99(8)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37401151

RESUMO

Lake Pastos Grandes in Bolivia is mainly composed of salt flats, which are sporadically and only partially submerged during the wet season. In the present study, the chemical composition of water samples of the lake and some influent rivers was determined. We found that it is likely that the lake was influenced by the dilution of metals from ancient evaporites. We performed the first metagenomic studies of this lake. Analyses of shotgun metagenomics revealed that the relative abundances of Burkholderiales and Pseudomonadales were noteworthy in the water samples, whereas the archaea belonging to the Halobacteriales and Cyanobacteria from subsection III had high abundances in the salt flat. The eukaryotes Crustacea and Diatomea exhibited the highest abundances in the water samples. We investigated further the potential effect of human activities on the nitrogen cycle mobilization in the lake and the propagation of antimicrobial resistance genes. This is the first report about the cycle in the lake. Additionally, rifamycin resistance genes and genes related to efflux pumps, which are not considered a hazard when identified in metagenomes, had the uppermost relative abundances in all sampling points. We found that Lake Pastos Grandes hitherto does not show an appreciable influence by anthropogenic actions.


Assuntos
Lagos , Microbiota , Humanos , Lagos/microbiologia , Bolívia , Altitude , Microbiota/genética , Cloreto de Sódio , Água
2.
PeerJ ; 10: e13052, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35282279

RESUMO

Teleost fish are the most diverse group of extant vertebrates and have varied digestive anatomical structures and strategies, suggesting they also possess an array of different host-microbiota interactions. Differences in fish gut microbiota have been shown to affect host development, the process of gut colonization, and the outcomes of gene-environment or immune system-microbiota interactions. There is generally a lack of studies on the digestive mechanisms and microbiota of agastric short-intestine fish however, meaning that we do not understand how changes in gut microbial diversity might influence the health of these types of fish. To help fill these gaps in knowledge, we decided to study the Mexican pike silverside (Chirostoma estor) which has a simplified alimentary canal (agastric, short-intestine, 0.7 gut relative length) to observe the diversity and metabolic potential of its intestinal microbiota. We characterized gut microbial populations using high-throughput sequencing of the V3 region in bacterial 16S rRNA genes while searching for population shifts resulting associated with fish development in different environments and cultivation methods. Microbiota samples were taken from the digesta, anterior and posterior intestine (the three different intestinal components) of fish that grew wild in a lake, that were cultivated in indoor tanks, or that were raised in outdoor ponds. Gut microbial diversity was significantly higher in wild fish than in cultivated fish, suggesting a loss of diversity when fish are raised in controlled environments. The most abundant phyla observed in these experiments were Firmicutes and Proteobacteria, particularly of the genera Mycoplasma, Staphylococcus, Spiroplasma, and Aeromonas. Of the 14,161 OTUs observed in this experiment, 133 were found in all groups, and 17 of these, belonging to Acinetobacter, Aeromonas, Pseudomonas, and Spiroplasma genera, were found in all samples suggesting the existence of a core C. estor microbiome. Functional metagenomic prediction of bacterial ecological functions using PICRUSt2 suggested that different intestinal components select for functionally distinct microbial populations with variation in pathways related to the metabolism of amino acids, vitamins, cofactors, and energy. Our results provide, for the first time, information on the bacterial populations present in an agastric, short-gut teleost with commercial potential and show that controlled cultivation of this fish reduces the diversity of its intestinal microbiota.


Assuntos
Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/genética , Esocidae/genética , RNA Ribossômico 16S/genética , Peixes/genética , Bactérias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA