Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Found Phys ; 54(4): 49, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979431

RESUMO

If an asymmetry in time does not arise from the fundamental dynamical laws of physics, it may be found in special boundary conditions. The argument normally goes that since thermodynamic entropy in the past is lower than in the future according to the Second Law of Thermodynamics, then tracing this back to the time around the Big Bang means the universe must have started off in a state of very low thermodynamic entropy: the Thermodynamic Past Hypothesis. In this paper, we consider another boundary condition that plays a similar role, but for the decoherent arrow of time, i.e. the subsystems of the universe are more mixed in the future than in the past. According to what we call the Entanglement Past Hypothesis, the initial quantum state of the universe had very low entanglement entropy. We clarify the content of the Entanglement Past Hypothesis, compare it with the Thermodynamic Past Hypothesis, and identify some challenges and open questions for future research.

2.
Entropy (Basel) ; 26(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39056926

RESUMO

We consider a quantum system of large size N and its subsystem of size L, assuming that N is much larger than L, which can also be sufficiently large, i.e., 1≪L≲N. A widely accepted mathematical version of this inequality is the asymptotic regime of successive limits: first the macroscopic limit N→∞, then an asymptotic analysis of the entanglement entropy as L→∞. In this paper, we consider another version of the above inequality: the regime of asymptotically proportional L and N, i.e., the simultaneous limits L→∞,N→∞,L/N→λ>0. Specifically, we consider a system of free fermions that is in its ground state, and such that its one-body Hamiltonian is a large random matrix, which is often used to model long-range hopping. By using random matrix theory, we show that in this case, the entanglement entropy obeys the volume law known for systems with short-range hopping but described either by a mixed state or a pure strongly excited state of the Hamiltonian. We also give streamlined proof of Page's formula for the entanglement entropy of black hole radiation for a wide class of typical ground states, thereby proving the universality and the typicality of the formula.

3.
J Phys Condens Matter ; 36(29)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38593819

RESUMO

Identifying topological phases for a strongly correlated theory remains a non-trivial task, as defining order parameters, such as Berry phases, is not straightforward. Quantum information theory is capable of identifying topological phases for a theory that exhibits quantum phase transition with a suitable definition of order parameters that are related to different entanglement measures for the system. In this work, we study entanglement entropy for a coupled SSH model, both in the presence and absence of Hubbard interaction and at varying interaction strengths. For the free theory, edge entanglement acts as an order parameter, which is supported by analytic calculations and numerical (DMRG) studies. We calculate the symmetry-resolved entanglement and demonstrate the equipartition of entanglement for this model which itself acts as an order parameter when calculated for the edge modes. As the DMRG calculation allows one to go beyond the free theory, we study the entanglement structure of the edge modes in the presence of on-site Hubbard interaction for the same model. A sudden reduction of edge entanglement is obtained as interaction is switched on. The explanation for this lies in the change in the size of the degenerate subspaces in the presence and absence of interaction. We also study the signature of entanglement when the interaction strength becomes extremely strong and demonstrate that the edge entanglement remains protected. In this limit, the energy eigenstates essentially become a tensor product state, implying zero entanglement. However, a remnant entropy survives in the non-trivial topological phase, which is exactly due to the entanglement of the edge modes.

4.
Entropy (Basel) ; 26(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38539729

RESUMO

Genuine multipartite entanglement is crucial for quantum information and related technologies, but quantifying it has been a long-standing challenge. Most proposed measures do not meet the "genuine" requirement, making them unsuitable for many applications. In this work, we propose a journey toward addressing this issue by introducing an unexpected relation between multipartite entanglement and hypervolume of geometric simplices, leading to a tetrahedron measure of quadripartite entanglement. By comparing the entanglement ranking of two highly entangled four-qubit states, we show that the tetrahedron measure relies on the degree of permutation invariance among parties within the quantum system. We demonstrate potential future applications of our measure in the context of quantum information scrambling within many-body systems.

5.
Entropy (Basel) ; 26(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38539783

RESUMO

The intricate interplay between unitary evolution and projective measurements could induce entanglement phase transitions in the nonequilibrium dynamics of quantum many-particle systems. In this work, we uncover loss-induced entanglement transitions in non-Hermitian topological superconductors. In prototypical Kitaev chains with onsite particle losses and varying hopping and pairing ranges, the bipartite entanglement entropy of steady states is found to scale logarithmically versus the system size in topologically nontrivial phases and become independent of the system size in the trivial phase. Notably, the scaling coefficients of log-law entangled phases are distinguishable when the underlying system resides in different topological phases. Log-law to log-law and log-law to area-law entanglement phase transitions are further identified when the system switches between different topological phases and goes from a topologically nontrivial to a trivial phase, respectively. These findings not only establish the relationships among spectral, topological and entanglement properties in a class of non-Hermitian topological superconductors but also provide an efficient means to dynamically reveal their distinctive topological features.

6.
Entropy (Basel) ; 25(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38136543

RESUMO

The information loss paradox associated with black hole Hawking evaporation is an unresolved problem in modern theoretical physics. In a recent brief essay, we revisited the evolution of the black hole entanglement entropy via the Euclidean path integral (EPI) of the quantum state and allow for the branching of semi-classical histories along the Lorentzian evolution. We posited that there exist at least two histories that contribute to EPI, where one is an information-losing history, while the other is an information-preserving one. At early times, the former dominates EPI, while at the late times, the latter becomes dominant. By doing so, we recovered the essence of the Page curve, and thus, the unitarity, albeit with the turning point, i.e., the Page time, much shifted toward the late time. In this full-length paper, we fill in the details of our arguments and calculations to strengthen our notion. One implication of this modified Page curve is that the entropy bound may thus be violated. We comment on the similarity and difference between our approach and that of the replica wormholes and the islands' conjectures.

7.
J Phys Condens Matter ; 35(35)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37253373

RESUMO

We investigate the many-body localization (MBL) transitions in a spin-1/2 Heisenberg chain with an on-site random magnetic field by employing global quantum discord (GQD). We use the disorder-averaged GQD to estimate the MBL critical point, which is found to be around atWc=3.8by making a finite-size scaling analysis. We further compare our results of GQD with those of half-chain entanglement entropy (EE) that is promising in the study of MBL. We show that GQD can exclude the finite-size interference under the same condition, which implies that GQD is more robust than the half-chain EE in characterizing MBL.

8.
Lett Math Phys ; 113(3): 54, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187995

RESUMO

We show that, for a class of planar determinantal point processes (DPP) X, the growth of the entanglement entropy S(X(Ω)) of X on a compact region Ω⊂R2d, is related to the variance VX(Ω) as follows: VX(Ω)≲SX(Ω)≲VX(Ω).Therefore, such DPPs satisfy an area law SXg(Ω)≲∂Ω, where ∂Ω is the boundary of Ω if they are of Class I hyperuniformity (VX(Ω)≲∂Ω), while the area law is violated if they are of Class II hyperuniformity (as L→∞, VX(LΩ)∼CΩLd-1logL). As a result, the entanglement entropy of Weyl-Heisenberg ensembles (a family of DPPs containing the Ginibre ensemble and Ginibre-type ensembles in higher Landau levels), satisfies an area law, as a consequence of its hyperuniformity.

9.
Entropy (Basel) ; 25(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37238543

RESUMO

In this paper, we construct the metric tensor and volume for the manifold of purifications associated with an arbitrary reduced density operator ρS. We also define a quantum coarse-graining (CG) to study the volume where macrostates are the manifolds of purifications, which we call surfaces of ignorance (SOI), and microstates are the purifications of ρS. In this context, the volume functions as a multiplicity of the macrostates that quantifies the amount of information missing from ρS. Using examples where the SOI are generated using representations of SU(2), SO(3), and SO(N), we show two features of the CG: (1) A system beginning in an atypical macrostate of smaller volume evolves to macrostates of greater volume until it reaches the equilibrium macrostate in a process in which the system and environment become strictly more entangled, and (2) the equilibrium macrostate takes up the vast majority of the coarse-grained space especially as the dimension of the total system becomes large. Here, the equilibrium macrostate corresponds to a maximum entanglement between the system and the environment. To demonstrate feature (1) for the examples considered, we show that the volume behaves like the von Neumann entropy in that it is zero for pure states, maximal for maximally mixed states, and is a concave function with respect to the purity of ρS. These two features are essential to typicality arguments regarding thermalization and Boltzmann's original CG.

10.
MethodsX ; 10: 102136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091949

RESUMO

This study develops a method to implement a quantum field lens coding and classification algorithm for two quantum double-field (QDF) system models: 1- a QDF model, and 2- a QDF lens coding model by a DF computation (DFC). This method determines entanglement entropy (EE) by implementing QDF operators in a quantum circuit. The physical link between the two system models is a quantum field lens coding algorithm (QF-LCA), which is a QF lens distance-based, implemented on real N -qubit machines. This is with the possibility to train the algorithm for making strong predictions on phase transitions as the shared objective of both models. In both system models, QDF transformations are simulated by a DFC algorithm where QDF data are collected and analyzed to represent energy states and transitions, and determine entanglement based on EE. The method gives a list of steps to simulate and optimize any thermodynamic system on macro and micro-scale observations, as presented in this article:•The implementation of QF-LCA on quantum computers with EE measurement under a QDF transformation.•Validation of QF-LCA as implemented compared to quantum Fourier transform (QFT) and its inverse, QFT - 1 .•Quantum artificial intelligence (QAI) features by classifying QDF with strong measurement outcome predictions.

11.
J Phys Condens Matter ; 35(8)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36541508

RESUMO

We study the disconnected entanglement entropy (DEE) of a Kitaev chain in which the chemical potential is periodically modulated withδ-function pulses within the framework of Floquet theory. For this driving protocol, the DEE of a sufficiently large system with open boundary conditions turns out to be integer-quantized, with the integer being equal to the number of Majorana edge modes localized at each edge of the chain generated by the periodic driving, thereby establishing the DEE as a marker for detecting Floquet Majorana edge modes. Analyzing the DEE, we further show that these Majorana edge modes are robust against weak spatial disorder and temporal noise. Interestingly, we find that the DEE may, in some cases, also detect the anomalous edge modes which can be generated by periodic driving of the nearest-neighbor hopping, even though such modes have no topological significance and not robust against spatial disorder. We also probe the behavior of the DEE for a kicked Ising chain in the presence of an integrability breaking interaction which has been experimentally realized.

12.
Rep Prog Phys ; 85(4)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35114662

RESUMO

We give a pedagogical review of how concepts from quantum information theory build up the gravitational side of the anti-de Sitter/conformal field theory correspondence. The review is self-contained in that it only presupposes knowledge of quantum mechanics and general relativity; other tools-including holographic duality itself-are introduced in the text. We have aimed to give researchers interested in entering this field a working knowledge sufficient for initiating original projects. The review begins with the laws of black hole thermodynamics, which form the basis of this subject, then introduces the Ryu-Takayanagi proposal, the Jafferis-Lewkowycz-Maldacena-Suh (JLMS) relation, and subregion duality. We discuss tensor networks as a visualization tool and analyze various network architectures in detail. Next, several modern concepts and techniques are discussed: Rényi entropies and the replica trick, differential entropy and kinematic space, modular Berry phases, modular minimal entropy, entanglement wedge cross-sections, bit threads, and others. We discuss the extent to which bulk geometries are fixed by boundary entanglement entropies, and analyze the relations such as the monogamy of mutual information, which boundary entanglement entropies must obey if a state has a semiclassical bulk dual. We close with a discussion of black holes, including holographic complexity, firewalls and the black hole information paradox, islands, and replica wormholes.

13.
Entropy (Basel) ; 23(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34945970

RESUMO

The Callan-Giddings-Harvey-Strominger black hole has a spectrum and temperature that correspond to an accelerated reflecting boundary condition in flat spacetime. The beta coefficients are identical to a moving mirror model, where the acceleration is exponential in laboratory time. The center of the black hole is modeled by the perfectly reflecting regularity condition that red-shifts the field modes, which is the source of the particle creation. In addition to computing the energy flux, we find the corresponding moving mirror parameter associated with the black hole mass and the cosmological constant in the gravitational analog system. Generalized to any mirror trajectory, we derive the self-force (Lorentz-Abraham-Dirac), consistently, expressing it and the Larmor power in connection with entanglement entropy, inviting an interpretation of acceleration radiation in terms of information flow. The mirror self-force and radiative power are applied to the particular CGHS black hole analog moving mirror, which reveals the physics of information at the horizon during asymptotic approach to thermal equilibrium.

14.
J Phys Condens Matter ; 34(8)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34794135

RESUMO

We study the non-adiabatic dynamics of a typical symmetry-protected topological (SPT) phase-the Haldane insulator (HI) phase with broken bond-centered inversion. By continuously breaking the middle chain, we find the gap closes at a critical point in the deep HI regime with a change of particle number partition of the left or right system. The adiabatic evolution fails at this critical point and we show how to predict the dynamics of the entanglement entropy near this point using a two-level model. These results show that one can find a critical regime where the entanglement measurement is relatively robust against perturbation that breaks the protecting symmetries in the HI. This is in contrast to the common belief that the SPT phases are fragile without the protecting symmetries.

15.
J Phys Condens Matter ; 33(33)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34062514

RESUMO

We investigate the nonequilibrium dynamics of entanglement entropy and out-of-time-order correlator (OTOC) of noninteracting fermions at half-filling starting from a product state to distinguish the delocalized, multifractal (in the limit of nearest neighbor hopping), localized and mixed phases hosted by the quasiperiodic Aubry-André-Harper (AAH) model in the presence of long-range hopping. For sufficiently long-range hopping strength a secondary logarithmic behavior in the entanglement entropy is found in the mixed phases whereas the primary behavior is a power-law the exponent of which is different in different phases. The saturation value of entanglement entropy in the delocalized, multifractal and mixed phases depends linearly on system size whereas in the localized phase (in the short-range regime) it is independent of system size. The early-time growth of OTOC shows very different power-law behaviors in the presence of nearest neighbor hopping and long-range hopping. The late time decay of OTOC leads to noticeably different power-law exponents in different phases. The spatial profile of OTOC and its system-size dependence also provide distinct features to distinguish phases. In the mixed phases the spatial profile of OTOC shows two different dependences on space for small and large distances respectively. Interestingly the spatial profile contains large fluctuations at the special locations related to the quasiperiodicity parameter in the presence of multifractal states.

16.
Entropy (Basel) ; 22(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-33286456

RESUMO

When a quantum pure state is drawn uniformly at random from a Hilbert space, the state is typically highly entangled. This property of a random state is known as generic entanglement of quantum states and has been long investigated from many perspectives, ranging from the black hole science to quantum information science. In this paper, we address the question of how symmetry of quantum states changes the properties of generic entanglement. More specifically, we study bipartite entanglement entropy of a quantum state that is drawn uniformly at random from an invariant subspace of a given symmetry. We first extend the well-known concentration formula to the one applicable to any subspace and then show that 1. quantum states in the subspaces associated with an axial symmetry are still highly entangled, though it is less than that of the quantum states without symmetry, 2. quantum states associated with the permutation symmetry are significantly less entangled, and 3. quantum states with translation symmetry are as entangled as the generic one. We also numerically investigate the phase-transition behavior of the distribution of generic entanglement, which indicates that the phase transition seems to still exist even when random states have symmetry.

17.
Entropy (Basel) ; 21(2)2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266843

RESUMO

A physical system out of thermal equilibrium is a resource for obtaining useful work when a heat bath at some temperature is available. Information Heat Engines are the devices which generalize the Szilard cylinders and make use of the celebrated Maxwell demons to this end. In this paper, we consider a thermo-chemical reservoir of electrons which can be exchanged for entropy and work. Qubits are used as messengers between electron reservoirs to implement long-range voltage transformers with neither electrical nor magnetic interactions between the primary and secondary circuits. When they are at different temperatures, the transformers work according to Carnot cycles. A generalization is carried out to consider an electrical network where quantum techniques can furnish additional security.

18.
Entropy (Basel) ; 21(3)2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33267011

RESUMO

We consider the thermodynamic origin of the gravitational force of matter by applying the spacetime entanglement entropy and the Unruh effect originating from vacuum quantum fluctuations. By analyzing both the local thermal equilibrium and quasi-static processes of a system, we may get both the magnitude and direction of Newton's gravitational force in our theoretical model. Our work shows the possibility that the elusive Unruh effect has already shown its manifestation through gravitational force.

19.
Entropy (Basel) ; 21(5)2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33267253

RESUMO

The Tsallis entropy is a useful one-parameter generalization to the standard von Neumann entropy in quantum information theory. In this work, we study the variance of the Tsallis entropy of bipartite quantum systems in a random pure state. The main result is an exact variance formula of the Tsallis entropy that involves finite sums of some terminating hypergeometric functions. In the special cases of quadratic entropy and small subsystem dimensions, the main result is further simplified to explicit variance expressions. As a byproduct, we find an independent proof of the recently proven variance formula of the von Neumann entropy based on the derived moment relation to the Tsallis entropy.

20.
Entropy (Basel) ; 20(1)2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33265167

RESUMO

For spin-1 condensates, the spatial degrees of freedom can be considered as being frozen at temperature zero, while the spin-degrees of freedom remain free. Under this condition, the entanglement entropy has been derived exactly with an analytical form. The entanglement entropy is found to decrease monotonically with the increase of the magnetic polarization as expected. However, for the ground state in polar phase, an extremely steep fall of the entropy is found when the polarization emerges from zero. Then the fall becomes a gentle descent after the polarization exceeds a turning point.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA