Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28482, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601514

RESUMO

In recent years, the growth of Internet of Things devices has increased the use of sustainable energy sources. An alternative technology is offered by triboelectric nanogenerators (TENGs) that can harvest green energy and convert it into electrical energy. Herein, we assessed three different nopal powder types that were used as triboelectric layers of eco-friendly and sustainable TENGs for renewable energy harvesting from environmental vibrations and powering electronic devices. These nanogenerators were fabricated using waste and recycled materials with a compact design for easy transportation and collocation on non-homogeneous surfaces of different vibration or motion sources. In addition, these TENGs have advantages such as high output performance, stable output voltage, lightweight, low-cost materials, and a simple fabrication process. These nanogenerators use the contact-separation mode between two triboelectric layers to convert the vibration energy into electrical energy. TENG with the best output performance is based on dehydrated nopal powder, generating an output power density of 2.145 mWm-2 with a load resistance of 39.97 MΩ under 3g acceleration and 25 Hz operating frequency. The proposed TENGs have stable output voltages during 22500 operating cycles. These nanogenerators can light 116 ultra-bright blue commercial LEDs and power a digital calculator. Also, the TENGs can be used as a chess clock connected to a mobile phone app for smart motion sensing. These nanogenerators can harvest renewable vibration energy and power electronic devices, sensors, and smart motion sensing.

2.
Sensors (Basel) ; 24(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38676124

RESUMO

Electric-field energy harvesters (EFEHs) have emerged as a promising technology for harnessing the electric field surrounding energized environments. Current research indicates that EFEHs are closely associated with Tribo-Electric Nano-Generators (TENGs). However, the performance of TENGs in energized environments remains unclear. This work aims to evaluate the performance of TENGs in electric-field energy harvesting applications. For this purpose, TENGs of different sizes, operating in single-electrode mode were conceptualized, assembled, and experimentally tested. Each TENG was mounted on a 1.5 HP single-phase induction motor, operating at nominal parameters of 8 A, 230 V, and 50 Hz. In addition, the contact layer was mounted on a linear motor to control kinematic stimuli. The TENGs successfully induced electric fields and provided satisfactory performance to collect electrostatic charges in fairly variable electric fields. Experimental findings disclosed an approximate increase in energy collection ranging from 1.51% to 10.49% when utilizing TENGs compared to simple EFEHs. The observed correlation between power density and electric field highlights TENGs as a more efficient energy source in electrified environments compared to EFEHs, thereby contributing to the ongoing research objectives of the authors.

3.
Sensors (Basel) ; 23(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37430612

RESUMO

Ultrasonic communication and power transfer are attractive solutions when conventional electromagnetic-based or wired connections are unfeasible. Most ultrasonic communication applications concern a single-solid barrier. Nevertheless, some relevant scenarios can be composed of several fluid-solid media, through which communication and power transfer are intended. Due to its multi-layer nature, insertion loss and, consequently, the system efficiency considerably decrease. This paper presents an ultrasonic system capable of simultaneously power transferring and transmitting data through a set of two flat steel plates separated by a fluid layer using a pair of co-axially aligned piezoelectric transducers on opposite sides of the barrier. The system is based on frequency modulation and adopts a novel technique for automatic gain and automatic carrier control. The modems used herein were developed specifically for this application, rendering the system able to transfer data at a rate of 19,200 bps, using the frequency shift keying (FSK) modulation scheme and simultaneously transferring 66 mW of power through two flat steel plates (5 mm) separated by a fluid layer (100 mm), which completely supplied a pressure and temperature sensor. The proposed automatic gain control allowed a higher data transmission rate and the automatic carrier control reduced power consumption. The former reduced the transmission error from 12% to 5%, while the latter reduced the global power consumption from 2.6 W to 1.2 W. The proposed system is promising for monitoring applications such as oil wellbore structural health monitoring systems.

4.
Micromachines (Basel) ; 14(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37374858

RESUMO

Due to its superior advantages in terms of electronegativity, metallic conductivity, mechanical flexibility, customizable surface chemistry, etc., 2D MXenes for nanogenerators have demonstrated significant progress. In order to push scientific design strategies for the practical application of nanogenerators from the viewpoints of the basic aspect and recent advancements, this systematic review covers the most recent developments of MXenes for nanogenerators in its first section. In the second section, the importance of renewable energy and an introduction to nanogenerators, major classifications, and their working principles are discussed. At the end of this section, various materials used for energy harvesting and frequent combos of MXene with other active materials are described in detail together with the essential framework of nanogenerators. In the third, fourth, and fifth sections, the materials used for nanogenerators, MXene synthesis along with its properties, and MXene nanocomposites with polymeric materials are discussed in detail with the recent progress and challenges for their use in nanogenerator applications. In the sixth section, a thorough discussion of the design strategies and internal improvement mechanisms of MXenes and the composite materials for nanogenerators with 3D printing technologies are presented. Finally, we summarize the key points discussed throughout this review and discuss some thoughts on potential approaches for nanocomposite materials based on MXenes that could be used in nanogenerators for better performance.

5.
Sensors (Basel) ; 23(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37177398

RESUMO

Triboelectric nanogenerators (TENGs) based on organic materials can harvest green energy to convert it into electrical energy. These nanogenerators could be used for Internet-of-Things (IoT) devices, substituting solid-state chemical batteries that have toxic materials and limited-service time. Herein, we develop a portable triboelectric nanogenerator based on dehydrated nopal powder (NOP-TENG) as novel triboelectric material. In addition, this nanogenerator uses a polyimide film tape adhered to two copper-coated Bakelite plates. The NOP-TENG generates a power density of 2309.98 µW·m-2 with a load resistance of 76.89 MΩ by applying a hand force on its outer surface. Furthermore, the nanogenerator shows a power density of 556.72 µW·m-2 with a load resistance of 76.89 MΩ and under 4g acceleration at 15 Hz. The output voltage of the NOP-TENG depicts a stable output performance even after 27,000 operation cycles. This nanogenerator can light eighteen green commercial LEDs and power a digital calculator. The proposed NOP-TENG has a simple structure, easy manufacturing process, stable electric behavior, and cost-effective output performance. This portable nanogenerator may power electronic devices using different vibration energy sources.

6.
Sensors (Basel) ; 23(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37177442

RESUMO

Road pavements are spread over large areas and convey various possibilities for energy sources such as high thermal gradients due to their materials and colors, wind corridors, large flat areas for solar harvesting, and heavy loading from traffic. The latest advances in road energy generation have been discretely implemented and have mainly focused on photovoltaic surface applications; other studies have explored the use of piezoelectric transducers with high stresses for better energy-production performance but limited life span. This study explores the stresses on pavement surfaces from traffic loading shockwaves that yield to the natural frequency vibration a piezoelectric harvester using a cantilever array. The passing vehicles triggered 16 piezoelectric sensors divided into four embedded steel profiles. The peak electrical power obtained in the experiment was 55.6 µW with a single transducer using a tip mass of 16 g. The proposed harvester demonstrated potential for applications in micro-generation of energy with limited infrastructure modification and high endurance under traffic loading over time. Its generation capacity is around 50 mWh a month with 16 piezoelectric cantilevers installed (for a commercial traffic volume of 1500 vehicles a day), enough to power a 200 m flashing LED raised marker strip to guide drivers for lane alignment during night shifts.

7.
Sensors (Basel) ; 23(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36850696

RESUMO

The increasing need for fresh water in a climate change scenario requires remote monitoring of water bodies in high-altitude mountain areas. This study aimed to explore the feasibility of SMFC operation in the presence of low dissolved oxygen concentrations for remote, on-site monitoring of physical environmental parameters in high-altitude mountainous areas. The implemented power management system (PMS) uses a reference SMFC (SMFCRef) to implement a quasi-maximum power point tracking (quasi-MPPT) algorithm to harvest energy stably. As a result, while transmitting in a point-to-point wireless sensor network topology, the system achieves an overall efficiency of 59.6%. Furthermore, the control mechanisms prevent energy waste and maintain a stable voltage despite the microbial fuel cell (MFC)'s high impedance, low time response, and low energy production. Moreover, our system enables a fundamental understanding of environmental systems and their resilience of adaptation strategies by being a low-cost, ecological, and environmentally friendly alternative to power-distributed and dynamic environmental sensing networks in high-altitude mountain ecosystems with anoxic environmental conditions.


Assuntos
Altitude , Fontes de Energia Bioelétrica , Ecossistema , Aclimatação , Algoritmos
8.
Nanomaterials (Basel) ; 12(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36558257

RESUMO

The internet of medical things (IoMT) is used for the acquisition, processing, transmission, and storage of medical data of patients. The medical information of each patient can be monitored by hospitals, family members, or medical centers, providing real-time data on the health condition of patients. However, the IoMT requires monitoring healthcare devices with features such as being lightweight, having a long lifetime, wearability, flexibility, safe behavior, and a stable electrical performance. For the continuous monitoring of the medical signals of patients, these devices need energy sources with a long lifetime and stable response. For this challenge, conventional batteries have disadvantages due to their limited-service time, considerable weight, and toxic materials. A replacement alternative to conventional batteries can be achieved for piezoelectric and triboelectric nanogenerators. These nanogenerators can convert green energy from various environmental sources (e.g., biomechanical energy, wind, and mechanical vibrations) into electrical energy. Generally, these nanogenerators have simple transduction mechanisms, uncomplicated manufacturing processes, are lightweight, have a long lifetime, and provide high output electrical performance. Thus, the piezoelectric and triboelectric nanogenerators could power future medical devices that monitor and process vital signs of patients. Herein, we review the working principle, materials, fabrication processes, and signal processing components of piezoelectric and triboelectric nanogenerators with potential medical applications. In addition, we discuss the main components and output electrical performance of various nanogenerators applied to the medical sector. Finally, the challenges and perspectives of the design, materials and fabrication process, signal processing, and reliability of nanogenerators are included.

9.
Nanomaterials (Basel) ; 12(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35893517

RESUMO

Natural sources of green energy include sunshine, water, biomass, geothermal heat, and wind. These energies are alternate forms of electrical energy that do not rely on fossil fuels. Green energy is environmentally benign, as it avoids the generation of greenhouse gases and pollutants. Various systems and equipment have been utilized to gather natural energy. However, most technologies need a huge amount of infrastructure and expensive equipment in order to power electronic gadgets, smart sensors, and wearable devices. Nanogenerators have recently emerged as an alternative technique for collecting energy from both natural and artificial sources, with significant benefits such as light weight, low-cost production, simple operation, easy signal processing, and low-cost materials. These nanogenerators might power electronic components and wearable devices used in a variety of applications such as telecommunications, the medical sector, the military and automotive industries, and internet of things (IoT) devices. We describe new research on the performance of nanogenerators employing several green energy acquisition processes such as piezoelectric, electromagnetic, thermoelectric, and triboelectric. Furthermore, the materials, applications, challenges, and future prospects of several nanogenerators are discussed.

10.
Nanomaterials (Basel) ; 11(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200636

RESUMO

The smart healthcare devices connected with the internet of things (IoT) for medical services can obtain physiological data of risk patients and communicate these data in real-time to doctors and hospitals. These devices require power sources with a sufficient lifetime to supply them energy, limiting the conventional electrochemical batteries. Additionally, these batteries may contain toxic materials that damage the health of patients and environment. An alternative solution to gradually substitute these electrochemical batteries is the development of triboelectric energy harvesters (TEHs), which can convert the kinetic energy of ambient into electrical energy. Here, we present the fabrication of a TEH formed by a stainless steel substrate (25 mm × 15 mm) coated with a molybdenum disulfide (MoS2) film as top element and a polydimethylsiloxane (PDMS) film deposited on indium tin oxide coated polyethylene terephthalate substrate (PET/ITO). This TEH has a generated maximum voltage of 2.3 V and maximum output power of 112.55 µW using a load resistance of 47 kΩ and a mechanical vibration to 59.7 Hz. The proposed TEH could be used to power potential smart healthcare devices.

11.
Sensors (Basel) ; 21(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206734

RESUMO

Energy harvesting shock absorbers (EHSA) have made great progress in recent years, although there are still no commercial solutions for this technology. This paper addresses the question of whether, and under what conditions, an EHSA can completely replace a conventional one. In this way, any conventional suspension could be replicated at will, while recovering part of the wasted energy. This paper focuses on mimicking the original passive damper behavior by continuously varying the electrical parameters of the regenerative damper. For this study, a typical ball-screw EHSA is chosen, and its equivalent suspension parameters are tried to be matched to the initial damper. The methodology proposes several electrical control circuits that optimize the dynamic behavior of the regenerative damper from the continuous variation of a load resistance. The results show that, given a target damper curve, the regenerative damper can adequately replicate it when there is a minimum velocity in the damper. However, when the damper velocity is close to zero, the only way to compensate for inertia is through the introduction of external energy to the system.


Assuntos
Rotação
12.
Micromachines (Basel) ; 12(4)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918230

RESUMO

As solar radiation is the most plentiful energy source on earth, thermoelectric energy harvesting emerges as an interesting solution for the Internet of Things (IoTs) in outdoor applications, particularly using semiconductor thermoelectric generators (TEGs) to power IoT devices. However, when a TEG is under solar radiation, the temperature gradient through TEG is minor, meaning that the TEG is useless. A method to keep a significant temperature gradient on a TEG is by using a solar absorber on one side for heating and a heat sink on the other side. In this paper, a compact TEG-based energy harvester that features a solar absorber based on a new class of solid matter, the so-called quasicrystal (QC), is presented. In addition, a water-cooled heat sink to improve the temperature gradient on the TEG is also proposed. The harvester is connected to a power management circuit that can provide an output voltage of 3 V and store up to 1.38 J in a supercapacitor per day. An experimental evaluation was carried out to compare the performance of the proposed QC-based harvester with another similar harvester but with a solar absorber based on conventional black paint. As a result, the QC-based harvester achieved 28.6% more efficient energy generation and achieved full charge of a supercapacitor around two hours earlier. At last, a study on how much the harvested energy can supply power to a sensor node for Smart agriculture during a day while considering a trade-off between the maximum number of measurements and the maximum number of transmission per day is presented.

13.
Sensors (Basel) ; 20(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256037

RESUMO

Industry 4.0 and the Internet of Things have significantly increased the use of sensors and electronic products based on flexible substrates, which require electrical energy for their performance. This electrical energy can be supplied by piezoelectric vibrational energy harvesting (pVEH) devices. These devices can convert energy from ambient mechanical excitations into electrical energy. In order to develop, these devices require piezoelectric films fabricated with a simple and low-cost process. In this work, we synthesize ZnO nanorod film by a solvothermal method and deposit by spraying on ITO (indium-tin-oxide)/PET (polyethylene terephthalate) flexible substrate for a pVEH microdevice. The results of the characterization of the ZnO nanorod film using X-ray diffraction (XRD) confirm the typical reflections for this type of nanomaterial (JCPDS 36-145). Based on transmission electron microscopy (TEM) images, the size of the nanorod film is close to 1380 nm, and the average diameter is 221 ± 67 nm. In addition, the morphological characteristics of the ZnO nanorod film are obtained using atomic force microscopy (AFM) tapping images. The pVEH microdevice has a resonant frequency of 37 Hz, a generated voltage and electrical power of 9.12 V and 6.67 µW, respectively, considering a load resistance of 107.7 kΩ and acceleration of 1.5 g. The ZnO nanorod film may be applied to pVEH microdevices with flexible substrates using a low-cost and easy fabrication process.

14.
Sensors (Basel) ; 20(20)2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080831

RESUMO

In the last decades, a lot of effort has been made in order to improve the use of environmentally friendly and renewable energy sources. In a context of small energy usage, energy harvesting takes place and thermal energy sources are one of its main energy sources because there are several unused heat sources available in the environment that may be used as renewable energy sources. To rapidly evaluate the energy potential of such thermal sources is a hard task, therefore, a way to perform this is welcome. In this work, a thermal pattern emulation system to evaluate potential thermal source in a easy way is proposed. The main characteristics of the proposed system is that it is online and remote, that is, while the thermal-source-under-test is being measured, the system is emulating it and evaluating the generated energy remotely. The main contribution of this work was to replace the conventional Proportional Integral Derivative (PID) controller to a Fuzzy-Proportional Integral (PI) controller. In order to compare both controllers, three tests were carried out, namely: (a) step response, (b) perturbation test, (c) thermal emulation of the thermal pattern obtained from a potential thermal source: tree trucks. Experimental results show that the Fuzzy-PI controller was faster than the PID, achieving a setting time 41.26% faster, and also was more efficient with a maximum error 53% smaller than the PID.

15.
Sensors (Basel) ; 19(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897710

RESUMO

The emergence of modern technologies, such as Wireless Sensor Networks (WSNs), the Internet-of-Things (IoT), and Machine-to-Machine (M2M) communications, involves the use of batteries, which pose a serious environmental risk, with billions of batteries disposed of every year. However, the combination of sensors and wireless communication devices is extremely power-hungry. Energy Harvesting (EH) is fundamental in enabling the use of low-power electronic devices that derive their energy from external sources, such as Microbial Fuel Cells (MFC), solar power, thermal and kinetic energy, among others. Plant Microbial Fuel Cell (PMFC) is a prominent clean energy source and a step towards the development of self-powered systems in indoor and outdoor environments. One of the main challenges with PMFCs is the dynamic power supply, dynamic charging rates and low-energy supply. In this paper, a PMFC-based energy harvester system is proposed for the implementation of autonomous self-powered sensor nodes with IoT and cloud-based service communication protocols. The PMFC design is specifically adapted with the proposed EH circuit for the implementation of IoT-WSN based applications. The PMFC-EH system has a maximum power point at 0.71 V, a current density of 5 mA cm - 2 , and a power density of 3.5 mW cm - 2 with a single plant. Considering a sensor node with a current consumption of 0.35 mA, the PMFC-EH green energy system allows a power autonomy for real-time data processing of IoT-based low-power WSN systems.

16.
Micromachines (Basel) ; 10(3)2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917550

RESUMO

Piezoelectric vibration energy harvesting (pVEH) microdevices can convert the mechanical vibrations to electrical voltages. In the future, these microdevices can provide an alternative to replace the electrochemical batteries, which cause contamination due to their toxic materials. We present the electromechanical modeling of a pVEH microdevice with a novel resonant structure for air conditioning vents at office buildings. This electromechanical modeling includes different multilayers and cross-sections of the microdevice resonator as well as the air damping. This microdevice uses a flexible substrate and it does not include toxics materials. The microdevice has a resonant structure formed by multilayer beams and U-shape proof mass of UV-resin (730 µm thickness). The multilayer beams contain flexible substrates (160 µm thickness) of polyethylene terephthalate (PET), two aluminum electrodes (100 nm thickness), and a ZnO layer (2 µm thickness). An analytical model is developed to predict the first bending resonant frequency and deflections of the microdevice. This model considers the Rayleigh and Macaulay methods, and the Euler-Bernoulli beam theory. In addition, the electromechanical behavior of the microdevice is determined through the finite element method (FEM) models. In these FEM models, the output power of the microdevice is obtained using different sinusoidal accelerations. The microdevice has a resonant frequency of 60.3 Hz, a maximum deflection of 2.485 mm considering an acceleration of 1.5 m/s², an output voltage of 2.854 V and generated power of 37.45 µW with a load resistance of 217.5 kΩ. An array of pVEH microdevices connected in series could be used to convert the displacements of air conditioning vents at office buildings into voltages for electronic devices and sensors.

17.
Sensors (Basel) ; 17(11)2017 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-29156564

RESUMO

With the widespread use of electric machines, there is a growing need to extract information from the machines to improve their control systems and maintenance management. The present work shows the development of an embedded system to perform the monitoring of the rotor physical variables of a squirrel cage induction motor. The system is comprised of: a circuit to acquire desirable rotor variable(s) and value(s) that send it to the computer; a rectifier and power storage circuit that converts an alternating current in a continuous current but also stores energy for a certain amount of time to wait for the motor's shutdown; and a magnetic generator that harvests energy from the rotating field to power the circuits mentioned above. The embedded system is set on the rotor of a 5 HP squirrel cage induction motor, making it difficult to power the system because it is rotating. This problem can be solved with the construction of a magnetic generator device to avoid the need of using batteries or collector rings and will send data to the computer using a wireless NRF24L01 module. For the proposed system, initial validation tests were made using a temperature sensor (DS18b20), as this variable is known as the most important when identifying the need for maintenance and control systems. Few tests have shown promising results that, with further improvements, can prove the feasibility of using sensors in the rotor.

18.
Sensors (Basel) ; 17(3)2017 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-28287495

RESUMO

We present here the design and fabrication of a self-powered and autonomous fringing field capacitive sensor to measure soil water content. The sensor is manufactured using a conventional printed circuit board and includes a porous ceramic. To read the sensor, we use a circuit that includes a 10 kHz triangle wave generator, an AC amplifier, a precision rectifier and a microcontroller. In terms of performance, the sensor's capacitance (measured in a laboratory prototype) increases up to 5% when the volumetric water content of the porous ceramic changed from 3% to 36%, resulting in a sensitivity of S = 15.5 pF per unity change. Repeatability tests for capacitance measurement showed that the θ v sensor's root mean square error is 0.13%. The average current consumption of the system (sensor and signal conditioning circuit) is less than 1.5 µ A, which demonstrates its suitability for being powered by energy harvesting systems. We developed a complete irrigation control system that integrates the sensor, an energy harvesting module composed of a microgenerator installed on the top of a micro sprinkler spinner, and a DC/DC converter circuit that charges a 1 F supercapacitor. The energy harvesting module operates only when the micro sprinkler spinner is irrigating the soil, and the supercapacitor is fully charged to 5 V in about 3 h during the first irrigation. After the first irrigation, with the supercap fully charged, the system can operate powered only by the supercapacitor for approximately 23 days, without any energy being harvested.

19.
Sensors (Basel) ; 16(9)2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27657075

RESUMO

In this paper, a simple and flexible method for increasing the lifetime of fixed or mobile wireless sensor networks is proposed. Based on past residual energy information reported by the sensor nodes, the sink node or another central node dynamically optimizes the communication activity levels of the sensor nodes to save energy without sacrificing the data throughput. The activity levels are defined to represent portions of time or time-frequency slots in a frame, during which the sensor nodes are scheduled to communicate with the sink node to report sensory measurements. Besides node mobility, it is considered that sensors' batteries may be recharged via a wireless power transmission or equivalent energy harvesting scheme, bringing to the optimization problem an even more dynamic character. We report large increased lifetimes over the non-optimized network and comparable or even larger lifetime improvements with respect to an idealized greedy algorithm that uses both the real-time channel state and the residual energy information.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA