Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
J Med Entomol ; 61(2): 354-366, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38339867

RESUMO

Anthropogenic activities are altering ecosystem stability and climate worldwide, which is disturbing and shifting arbovirus vector distributions. Although the overall geographic range of some epidemiologically important species is recognized, the spatiotemporal variation for other species in the context of climate change remains poorly understood. Here we predict the current potential distribution of 9 species of Culex (Melanoconion) based on an ecological niche modeling (ENM) approach and assess spatiotemporal variation in future climate change in the Neotropics. The most important environmental predictors were the mean temperature of the warmest season (27 °C), precipitation during the driest month (50 mm), and precipitation during the warmest season (>200 mm). The best current model for each species was transferred to the future general circulation model IPSL-CM6A-LR, using 2 shared socioeconomic pathway scenarios (ssp1-2.6, ssp5-8.5). Under both scenarios of climatic change, an expansion of suitable areas can be observed followed by a strong reduction for the medium-long future under the worst scenario. The multivariate environmental similarity surface analysis indicated future novel climates outside the current range. However, none of the species would occur in those areas. Even if many challenges remain in improving methods for forecasting species responses to global climate change and arbovirus transmission, ENM has strong potential to be applied to the geographic characterization of these systems. Our study can be used for the monitoring of Culex (Melanoconion) species populations and their associated arboviruses, contributing to develop region-specific public health surveillance programs.


Assuntos
Arbovírus , Culex , Culicidae , Animais , Ecossistema , Saúde Pública , Mosquitos Vetores , Arbovírus/fisiologia , Mudança Climática
2.
Viruses ; 16(2)2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38399986

RESUMO

The Saint Louis encephalitis virus (SLEV) is an encephalitogenic arbovirus (Flaviviridae family) that has a wide geographical distribution in the western hemisphere, especially in the Americas. The negevirus Brejeira (BREV) was isolated for the first time in Brazil in 2005. This study aimed to verify the existence of a possible interfering effect of BREV on the course of SLEV infection and vice versa. We used clone C6/36 cells. Three combinations of MOIs were used (SLEV 0.1 × BREV 1; SLEV 1 × BREV 0.1; SLEV 1 × BREV 1) in the kinetics of up to 7 days and then the techniques of indirect immunofluorescence (IFA), a plaque assay on Vero cells, and RT-PCR were performed. Our results showed that the cytopathic effect (CPE) caused by BREV was more pronounced than the CPE caused by SLEV. Results of IFA, the plaque assay, and RT-PCR showed the suppression of SLEV replication in the co-infection condition in all the MOI combinations used. The SLEV suppression was dose-dependent. Therefore, the ISV Brejeira can suppress SLEV replication in Aedes albopictus cells, but SLEV does not negatively interfere with BREV replication.


Assuntos
Aedes , Vírus da Encefalite de St. Louis , Interferência Viral , Animais , Chlorocebus aethiops , Vírus da Encefalite de St. Louis/genética , Células Vero , Insetos
3.
MAbs ; 16(1): 2297451, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38170638

RESUMO

The development of specific, safe, and potent monoclonal antibodies (Abs) has led to novel therapeutic options for infectious disease. In addition to preventing viral infection through neutralization, Abs can clear infected cells and induce immunomodulatory functions through engagement of their crystallizable fragment (Fc) with complement proteins and Fc receptors on immune cells. Little is known about the role of Fc effector functions of neutralizing Abs in the context of encephalitic alphavirus infection. To determine the role of Fc effector function in therapeutic efficacy against Venezuelan equine encephalitis virus (VEEV), we compared the potently neutralizing anti-VEEV human IgG F5 (hF5) Ab with intact Fc function (hF5-WT) or containing the loss of function Fc mutations L234A and L235A (hF5-LALA) in the context of VEEV infection. We observed significantly reduced binding to complement and Fc receptors, as well as differential in vitro kinetics of Fc-mediated cytotoxicity for hF5-LALA compared to hF5-WT. The in vivo efficacy of hF5-LALA was comparable to hF5-WT at -24 and + 24 h post infection, with both Abs providing high levels of protection. However, when hF5-WT and hF5-LALA were administered + 48 h post infection, there was a significant decrease in the therapeutic efficacy of hF5-LALA. Together these results demonstrate that optimal therapeutic Ab treatment of VEEV, and possibly other encephalitic alphaviruses, requires neutralization paired with engagement of immune effectors via the Fc region.


Assuntos
Anticorpos Antivirais , Vírus da Encefalite Equina Venezuelana , Animais , Cavalos , Humanos , Vírus da Encefalite Equina Venezuelana/genética , Anticorpos Neutralizantes/farmacologia , Receptores Fc , Imunoglobulina G
4.
Neurol Sci ; 45(3): 1263-1266, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38177968

RESUMO

Saint Louis encephalitis virus (SLEV) infection is an arbovirosis associated with a broad spectrum of neurological complications. We present a case of a 55-year-old man hailing from Manaus, a city situated in the heart of the Amazon Rainforest, who exhibited symptoms of vertigo, tremors, urinary and fecal retention, compromised gait, and encephalopathy 3 weeks following SLEV infection. Neuroaxis MRI revealed diffuse, asymmetric, and poorly defined margins hyperintense lesions with peripheral and ring enhancement in subcortical white matter, as well as severe spinal cord involvement. Serology for SLEV was positive both on serum and cerebrospinal fluid. To the best of our knowledge, the present report is the first to show brain lesions along with myelitis as a post-infectious complication of SLEV infection.


Assuntos
Encefalite de St. Louis , Encefalomielite Aguda Disseminada , Masculino , Humanos , Pessoa de Meia-Idade , Vírus da Encefalite de St. Louis/fisiologia , Encefalomielite Aguda Disseminada/diagnóstico por imagem , Encefalomielite Aguda Disseminada/etiologia , Encefalite de St. Louis/complicações , Encefalite de St. Louis/diagnóstico
5.
Acta Trop ; 250: 107088, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043673

RESUMO

St. Louis encephalitis virus (SLEV) is endemic in the Americas and its transmission networks involve Culex mosquitoes and avian species. In 2015, a human encephalitis outbreak took place in Arizona and California, indicating the re-emergence of this pathogen in the US. Viral strains isolated in that outbreak belong to genotype III SLEV previously detected only in South America. In this study, genotype III SLEV was detected in mosquitoes collected in Mar Chiquita Lagoon (Córdoba, Argentina), an overwintering site for numerous migratory bird species. The genotype III SLEV sequence detected in this site shares the closest known ancestor with those introduced in Arizona in 2015. Our results highlight the potential significance of wetlands as key sites for arbovirus maintenance and emergence.


Assuntos
Culicidae , Encefalite de St. Louis , Animais , Humanos , Estados Unidos , Vírus da Encefalite de St. Louis/genética , Encefalite de St. Louis/epidemiologia , Argentina/epidemiologia , Áreas Alagadas , Aves , Genótipo
6.
Viruses ; 15(12)2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38140592

RESUMO

Venezuelan equine encephalitis virus (VEEV) outbreaks occur sporadically. Additionally, VEEV has a history of development as a biothreat agent. Yet, no FDA-approved vaccine or therapeutic exists for VEEV disease. The sporadic outbreaks present a challenge for testing medical countermeasures (MCMs) in humans; therefore, well-defined animal models are needed for FDA Animal Rule licensure. The cynomolgus macaque (CM) model has been studied extensively at high challenge doses of the VEEV Trinidad donkey strain (>1.0 × 108 plaque-forming units [PFU]), doses that are too high to be a representative human dose. Based on viremia of two subtypes of VEEV, IC, and IAB, we found the CM infectious dose fifty (ID50) to be low, 12 PFU, and 6.7 PFU, respectively. Additionally, we characterized the pattern of three clinical parameters (viremia, temperature, and lymphopenia) across a range of doses to identify a challenge dose producing consistent signs of infection. Based on these studies, we propose a shift to using a lower challenge dose of 1.0 × 103 PFU in the aerosol CM model of VEEV disease. At this dose, NHPs had the highest viremia, demonstrated a fever response, and had a measurable reduction in complete lymphocyte counts-biomarkers that can demonstrate MCM efficacy.


Assuntos
Vírus da Encefalite Equina Venezuelana , Encefalomielite Equina Venezuelana , Vacinas Virais , Animais , Cavalos , Humanos , Macaca fascicularis , Viremia/tratamento farmacológico , Modelos Animais de Doenças
7.
Viruses ; 15(12)2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38140657

RESUMO

St. Louis encephalitis virus (SLEV) is a neglected mosquito-borne Flavivirus that may cause severe neurological disease in humans and other animals. There are no specific treatments against SLEV infection or disease approved for human use, and drug repurposing may represent an opportunity to accelerate the development of treatments against SLEV. Here we present a scalable, medium-throughput phenotypic cell culture-based screening assay on Vero CCL81 cells to identify bioactive compounds that could be repurposed against SLEV infection. We screened eighty compounds from the Medicines for Malaria Venture (MMV) COVID Box library to identify nine (11%) compounds that protected cell cultures from SLEV-induced cytopathic effects, with low- to mid-micromolar potencies. We validated six hit compounds using viral plaque-forming assays to find that the compounds ABT-239, Amiodarone, Fluphenazine, Posaconazole, Triparanol, and Vidofludimus presented varied levels of antiviral activity and selectivity depending on the mammalian cell type used for testing. Importantly, we identified and validated the antiviral activity of the anti-flavivirus nucleoside analog 7DMA against SLEV. Triparanol and Fluphenazine reduced infectious viral loads in both Vero CCL81 and HBEC-5i cell cultures and, similar to the other validated compounds, are likely to exert antiviral activity through a molecular target in the host.


Assuntos
Encefalite de St. Louis , Flavivirus , Malária , Triparanol , Animais , Humanos , Vírus da Encefalite de St. Louis , Encefalite de St. Louis/diagnóstico , Flufenazina , Antivirais/farmacologia , Mamíferos
8.
J Clin Microbiol ; 61(12): e0015223, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-37982611

RESUMO

Eastern equine encephalitis virus (EEEV), Madariaga virus (MADV), and Venezuelan equine encephalitis virus complex (VEEV) are New World alphaviruses transmitted by mosquitoes. They cause febrile and sometimes severe neurological diseases in human and equine hosts. Detecting them during the acute phase is hindered by non-specific symptoms and limited diagnostic tools. We designed and clinically assessed real-time reverse transcription polymerase chain reaction assays (rRT-PCRs) for VEEV complex, MADV, and EEEV using whole-genome sequences. Validation involved 15 retrospective serum samples from 2015 to 2017 outbreaks, 150 mosquito pools from 2015, and 118 prospective samples from 2021 to 2022 surveillance in Panama. The rRT-PCRs detected VEEV complex RNA in 10 samples (66.7%) from outbreaks, with one having both VEEV complex and MADV RNAs. VEEV complex RNA was found in five suspected dengue cases from disease surveillance. The rRT-PCR assays identified VEEV complex RNA in three Culex (Melanoconion) vomerifer pools, leading to VEEV isolates in two. Phylogenetic analysis revealed the VEEV ID subtype in positive samples. Notably, 11.9% of dengue-like disease patients showed VEEV infections. Together, our rRT-PCR validation in human and mosquito samples suggests that this method can be incorporated into mosquito and human encephalitic alphavirus surveillance programs in endemic regions.


Assuntos
Alphavirus , Culicidae , Dengue , Vírus da Encefalite Equina do Leste , Encefalomielite Equina do Leste , Encefalomielite Equina Venezuelana , Humanos , Animais , Cavalos/genética , Vírus da Encefalite Equina do Leste/genética , Encefalomielite Equina Venezuelana/diagnóstico , Encefalomielite Equina Venezuelana/epidemiologia , Culicidae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Filogenia , Estudos Prospectivos , Vigilância em Saúde Pública , Estudos Retrospectivos , Alphavirus/genética , RNA
9.
J Virol ; 97(8): e0082723, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37560924

RESUMO

Venezuelan equine encephalitis virus (VEEV) causes a febrile illness that can progress to neurological disease with the possibility of death in human cases. The evaluation and optimization of therapeutics that target brain infections demands knowledge of the host's response to VEEV, the dynamics of infection, and the potential for within-host evolution of the virus. We hypothesized that selective pressures during infection of the brain may differ temporally and spatially and so we investigated the dynamics of the host response, viral transcript levels, and genetic variation of VEEV TC-83 in eight areas of the brain in mice over 7 days post-infection (dpi). Viral replication increased throughout the brain until 5-6 dpi and decreased thereafter with neurons as the main site of viral replication. Low levels of genetic diversity were noted on 1 dpi and were followed by an expansion in the genetic diversity of VEEV and nonsynonymous (Ns) mutations that peaked by 5 dpi. The pro-inflammatory response and the influx of immune cells mirrored the levels of virus and correlated with substantial damage to neurons by 5 dpi and increased activation of microglial cells and astrocytes. The prevalence and dynamics of Ns mutations suggest that the VEEV is under selection within the brain and that progressive neuroinflammation may play a role in acting as a selective pressure. IMPORTANCE Treatment of encephalitis in humans caused by Venezuelan equine encephalitis virus (VEEV) from natural or aerosol exposure is not available, and hence, there is a great interest to address this gap. In contrast to natural infections, therapeutic treatment of infections from aerosol exposure will require fast-acting drugs that rapidly penetrate the blood-brain barrier, engage sites of infection in the brain and mitigate the emergence of drug resistance. Therefore, it is important to understand not only VEEV pathogenesis, but the trafficking of the viral population within the brain, the potential for within-host evolution of the virus, and how VEEV might evolve resistance.


Assuntos
Vírus da Encefalite Equina Venezuelana , Encefalite , Animais , Humanos , Camundongos , Encéfalo , Morte Celular , Vírus da Encefalite Equina Venezuelana/genética , Variação Genética , Encefalite/virologia
10.
Vive (El Alto) ; 6(17): 590-601, ago. 2023.
Artigo em Espanhol | LILACS | ID: biblio-1515636

RESUMO

El virus SARS-CoV-2 produce una enfermedad conocida como COVID-19 y puede producir complicaciones neurológicas como la encefalitis, la cual consiste en la inflamación a nivel del parénquima cerebral. Su pronto diagnóstico es crucial para poder asegurar la supervivencia de los individuos, ya que puede llevar al paciente al ingreso en unidad de cuidados intensivos. El tratamiento consiste en el soporte vital, la disminución de la inflamación y de la presión intracraneal, aunque estas medidas en ocasiones no son suficientes debido a que posee una alta tasa de mortalidad. OBJETIVO: identificar las principales características clínicas de la encefalitis asociada a la infección por SARS-CoV-2. METODOLOGIA: se realizó una revisión sistemática bajo la metodología PRISMA, utilizando diversos motores de búsqueda como PubMed, ScienceDirect, Web of Science y Scopus de los últimos cinco años en idioma inglés y español. RESULTADOS: se encontraron 63 artículos identificados en las bases de datos: PubMed; 18, Scielo con un total de 3, Sciencedirect con 3 y Google Scholar; 39. De estos artículos encontrados, 15 artículos estaban duplicados, 13 artículos eliminados por título y resumen, esto realizado luego de tomar en cuenta criterios de exclusión y relevancia del artículo mismo, se eliminaron 25 artículos luego de analizar el texto completo, obteniendo finalmente 10 artículos a emplear dentro del presente estudio. CONCLUSION: se concluyó que el SARS-CoV-2 tiene repercusión a nivel del sistema nervioso central, dando como resultado la presencia de patologías como encefalitis, la cual tiene una baja incidencia entre los pacientes, pero una mortalidad para nada despreciable.


The SARS-CoV-2 virus produces a disease known as COVID-19 and can produce neurological complications such as encephalitis, which consists of inflammation at the level of the brain parenchyma. Early diagnosis is crucial to ensure the survival of individuals, as it can lead to admission to the intensive care unit. Treatment consists of life support, reduction of inflammation and intracranial pressure, although these measures are sometimes not sufficient due to a high mortality rate. Objective. To identify the main clinical features of encephalitis associated with SARS-CoV-2 infection. Methodology. A systematic review was carried out under the PRISMA methodology, using different search engines such as PubMed, ScienceDirect, Web of Science and Scopus from the last five years in English and Spanish. Results. We found 63 articles identified in the databases: PubMed; 18, Scielo with a total of 3, Sciencedirect with 3 and Google Scholar; 39. Of these articles found, 15 articles were duplicates, 13 articles eliminated by title and abstract, this done after taking into account exclusion criteria and relevance of the article itself, 25 articles were eliminated after analyzing the full text, finally obtaining 10 articles to be used within the present study. Conclusion. It was concluded that SARS-CoV-2 has repercussions at the level of the central nervous system, resulting in the presence of pathologies such as encephalitis, which has a low incidence among patients, but not negligible mortality.


O vírus SARS-CoV-2 causas uma doença conhecida como COVID-19 e pode levar a complicações neurológicas, como a encefalite, que consiste em uma inflamação no nível do parênquima cerebral. O diagnóstico precoce é fundamental para garantir a sobrevivência dos indivíduos, pois pode levar à internação na unidade de terapia intensiva. O tratamento consiste em suporte à vida, redução da inflamação e redução da pressão intracraniana, embora essas medidas às vezes não sejam suficientes devido à alta taxa de mortalidade. Objetivo. Identificar as principais características clínicas da encefalite associada à infecção pelo SARS-CoV-2. Metodologia. Foi realizada uma revisão sistemática de acordo com a metodologia PRISMA, usando vários mecanismos de busca, como PubMed, ScienceDirect, Web of Science e Scopus, dos últimos cinco anos, em inglês e espanhol. Resultados. Sessenta e três artigos foram identificados nos seguintes bancos de dados: PubMed; 18, Scielo com um total de 3, Sciencedirect com 3 e Google Scholar; 39. Desses artigos encontrados, 15 eram duplicatas, 13 artigos foram eliminados pelo título e resumo, o que foi feito após levar em conta os critérios de exclusão e a relevância do artigo em si, 25 artigos foram eliminados após a análise do texto completo, obtendo-se finalmente 10 artigos a serem usados no presente estudo. Conclusões. Concluiu-se que o SARS-CoV-2 tem repercussões em nível do sistema nervoso central, resultando na presença de patologias como a encefalite, que tem baixa incidência entre os pacientes, mas mortalidade não desprezível.

11.
Viruses ; 15(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37376607

RESUMO

Venezuelan equine encephalitis virus (VEEV) is a disease typically confined to South and Central America, whereby human disease is characterised by a transient systemic infection and occasionally severe encephalitis, which is associated with lethality. Using an established mouse model of VEEV infection, the encephalitic aspects of the disease were analysed to identify biomarkers associated with inflammation. Sequential sampling of lethally challenged mice (infected subcutaneously) confirmed a rapid onset systemic infection with subsequent spread to the brain within 24 h of the challenge. Changes in inflammatory biomarkers (TNF-α, CCL-2, and CCL-5) and CD45+ cell counts were found to correlate strongly to pathology (R>0.9) and present previously unproven biomarkers for disease severity in the model, more so than viral titre. The greatest level of pathology was observed within the olfactory bulb and midbrain/thalamus. The virus was distributed throughout the brain/encephalon, often in areas not associated with pathology. The principal component analysis identified five principal factors across two independent experiments, with the first two describing almost half of the data: (1) confirmation of a systemic Th1-biased inflammatory response to VEEV infection, and (2) a clear correlation between specific inflammation of the brain and clinical signs of disease. Targeting strongly associated biomarkers of deleterious inflammation may ameliorate or even eliminate the encephalitic syndrome of this disease.


Assuntos
Vírus da Encefalite Equina Venezuelana , Encefalomielite Equina Venezuelana , Humanos , Cavalos , Camundongos , Animais , Fator de Necrose Tumoral alfa , Vírus da Encefalite Equina Venezuelana/fisiologia , Encéfalo , Inflamação/patologia , Quimiocinas , Leucócitos
12.
Viruses ; 15(3)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36992416

RESUMO

INTRODUCTION: Eastern equine encephalitis virus (EEEV) and Venezuelan equine encephalitis virus (VEEV) viruses are zoonotic pathogens affecting humans, particularly equines. These neuroarboviruses compromise the central nervous system and can be fatal in different hosts. Both have significantly influenced Colombia; however, few studies analyse its behaviour, and none develop maps using geographic information systems to characterise it. OBJECTIVE: To describe the temporal-spatial distribution of those viruses in Colombia between 2008 and 2019. METHODS: Retrospective cross-sectional descriptive study, based on weekly reports by municipalities of the ICA, of the surveillance of both arboviruses in equines, in Colombia, from 2008 to 2019. The data were converted into databases in Microsoft Access 365®, and multiple epidemiological maps were generated with the Kosmo RC1®3.0 software coupled to shape files of all municipalities in the country. RESULTS: In the study period, 96 cases of EEE and 70 of VEE were reported, with 58% of EEE cases occurring in 2016 and 20% of EEV cases in 2013. The most affected municipalities for EEE corresponded to the department of Casanare: Yopal (20), Aguazul (16), and Tauramena (10). In total, 40 municipalities in the country reported ≥1 case of EEE. CONCLUSIONS: The maps allow a quick appreciation of groups of neighbouring municipalities in different departments (1° political division) and regions of the country affected by those viruses, which helps consider the expansion of the disease associated with mobility and transport of equines between other municipalities, also including international borders, such as is the case with Venezuela. In that country, especially for EEV, municipalities in the department of Cesar are bordering and at risk for that arboviral infection. there is a high risk of equine encephalitis outbreaks, especially for VEE. This poses a risk also, for municipalities in the department of Cesar, bordering with Venezuela.


Assuntos
Vírus da Encefalite Equina Venezuelana , Encefalomielite Equina Venezuelana , Cavalos , Animais , Colômbia/epidemiologia , Estudos Transversais , Encefalomielite Equina Venezuelana/epidemiologia , Sistemas de Informação Geográfica , Cavalos/virologia , Estudos Retrospectivos
13.
J Mol Biol ; 435(6): 168012, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792007

RESUMO

The Venezuelan equine encephalitis virus (VEEV) belongs to the Togaviridae family and is pathogenic to both humans and equines. The VEEV non-structural protein 2 (nsP2) is a cysteine protease (nsP2pro) that processes the polyprotein and thus it is a drug target for inhibitor discovery. The atomic structure of the VEEV nsP2 catalytic domain was previously characterized by both X-ray crystallography and computational studies. A modified nsP2pro harboring a N475A mutation in the N terminus was observed to exhibit an unexpected conformation: the N-terminal residues bind to the active site, mimicking binding of a substrate. The large conformational change of the N terminus was assumed to be induced by the N475A mutation, as N475 has an important role in stabilization of the N terminus and the active site. This conformation was first observed in the N475A mutant, but we also found it while determining a crystal structure of the catalytically active nsP2pro containing the wild-type N475 active site residue and K741A/K767A surface entropy reduction mutations. This suggests that the N475A mutation is not a prerequisite for self-inhibition. Here, we describe a high resolution (1.46 Å) crystal structure of a truncated nsP2pro (residues 463-785, K741A/K767A) and analyze the structure further by molecular dynamics to study the active and self-inhibited conformations of nsP2pro and its N475A mutant. A comparison of the different conformations of the N-terminal residues sheds a light on the interactions that play an important role in the stabilization of the enzyme.


Assuntos
Domínio Catalítico , Cisteína Proteases , Vírus da Encefalite Equina Venezuelana , Animais , Humanos , Cristalografia por Raios X , Cisteína Proteases/química , Cisteína Proteases/genética , Vírus da Encefalite Equina Venezuelana/enzimologia , Cavalos , Simulação de Dinâmica Molecular
14.
Antiviral Res ; 212: 105560, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36822370

RESUMO

Venezuelan equine encephalitis virus (VEEV) is an alphavirus transmitted by mosquitos that can cause a febrile illness and induce severe neurological complications in humans and equine populations. Currently there are no FDA approved vaccines or antiviral treatments to combat VEEV. Proteomic techniques were utilized to create an interactome of the E1 fusion glycoprotein of VEEV. VEEV E1 interacted with a number of cellular chaperone proteins including protein disulfide isomerase family A member 6 (PDIA6). PDI inhibition through LOC14 and/or nitazoxanide treatment effectively decreased production of VEEV and other alphaviruses in vitro, including eastern equine encephalitis virus, Sindbis virus, and chikungunya virus. Decreased oxidoreductive capabilities of PDIs through LOC14 or nitazoxanide treatment impacted both early and late events in viral replication, including the production of non-infectious virions and decreased VEEV E1 disulfide bond formation. Results from this study identified PDIs as critical regulators of alphavirus replication and potential therapeutic targets.


Assuntos
Alphavirus , Vírus Chikungunya , Vírus da Encefalite Equina Venezuelana , Encefalomielite Equina Venezuelana , Humanos , Animais , Cavalos , Proteômica , Linhagem Celular , Replicação Viral , Encefalomielite Equina Venezuelana/tratamento farmacológico , Isomerases de Dissulfetos de Proteínas/farmacologia , Isomerases de Dissulfetos de Proteínas/uso terapêutico
15.
Proteomics ; 23(5): e2200237, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36480152

RESUMO

The innate immune protection provided by cationic antimicrobial peptides (CAMPs) has been shown to extend to antiviral activity, with putative mechanisms of action including direct interaction with host cells or pathogen membranes. The lack of therapeutics available for the treatment of viruses such as Venezuelan equine encephalitis virus (VEEV) underscores the urgency of novel strategies for antiviral discovery. American alligator plasma has been shown to exhibit strong in vitro antibacterial activity, and functionalized hydrogel particles have been successfully employed for the identification of specific CAMPs from alligator plasma. Here, a novel bait strategy in which particles were encapsulated in membranes from either healthy or VEEV-infected cells was implemented to identify peptides preferentially targeting infected cells for subsequent evaluation of antiviral activity. Statistical analysis of peptide identification results was used to select five candidate peptides for testing, of which one exhibited a dose-dependent inhibition of VEEV and also significantly inhibited infectious titers. Results suggest our bioprospecting strategy provides a versatile platform that may be adapted for antiviral peptide identification from complex biological samples.


Assuntos
Jacarés e Crocodilos , Vírus da Encefalite Equina Venezuelana , Encefalomielite Equina Venezuelana , Animais , Cavalos , Vírus da Encefalite Equina Venezuelana/fisiologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Encefalomielite Equina Venezuelana/tratamento farmacológico , Encefalomielite Equina Venezuelana/prevenção & controle , Bioprospecção , Replicação Viral , Peptídeos
16.
Viruses ; 14(12)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36560802

RESUMO

The blood brain barrier (BBB) is a multicellular microenvironment that plays an important role in regulating bidirectional transport to and from the central nervous system (CNS). Infections by many acutely infectious viruses such as alphaviruses and flaviviruses are known to impact the integrity of the endothelial lining of the BBB. Infection by Venezuelan Equine Encephalitis Virus (VEEV) through the aerosol route causes significant damage to the integrity of the BBB, which contributes to long-term neurological sequelae. An effective therapeutic intervention strategy should ideally not only control viral load in the host, but also prevent and/or reverse deleterious events at the BBB. Two dimensional monocultures, including trans-well models that use endothelial cells, do not recapitulate the intricate multicellular environment of the BBB. Complex in vitro organ-on-a-chip models (OOC) provide a great opportunity to introduce human-like experimental models to understand the mechanistic underpinnings of the disease state and evaluate the effectiveness of therapeutic candidates in a highly relevant manner. Here we demonstrate the utility of a neurovascular unit (NVU) in analyzing the dynamics of infection and proinflammatory response following VEEV infection and therapeutic effectiveness of omaveloxolone to preserve BBB integrity and decrease viral and inflammatory load.


Assuntos
Vírus da Encefalite Equina Venezuelana , Encefalomielite Equina Venezuelana , Humanos , Animais , Cavalos , Vírus da Encefalite Equina Venezuelana/fisiologia , Barreira Hematoencefálica , Encefalomielite Equina Venezuelana/tratamento farmacológico , Encefalomielite Equina Venezuelana/prevenção & controle , Células Endoteliais , Sistemas Microfisiológicos
17.
Viruses ; 14(11)2022 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-36366557

RESUMO

Infections with arboviruses are reported worldwide. Saint Louis encephalitis (SLEV) and West Nile (WNV) viruses are closely related flaviviruses affecting humans and animals. SLEV has been sporadically detected in humans, and corresponding antibodies have been frequently detected in horses throughout Brazil. WNV was first reported in western Brazil over a decade ago, has been associated with neurological disorders in humans and equines and its prevalence is increasing nationwide. Herein, we investigated by molecular and serological methods the presence of SLEV and WNV in equines from Rio de Janeiro. A total of 435 serum samples were collected from healthy horses and tested for specific neutralizing antibodies by plaque reduction neutralization test (PRNT90). Additionally, samples (serum, cerebrospinal fluid, central nervous system tissue) from 72 horses, including horses with neurological disorders resulting in a fatal outcome or horses which had contact with them, were tested by real-time reverse transcription-polymerase chain reaction (RT-qPCR) for both viruses. Adopting the criterion of four-fold antibody titer difference, 165 horses (38%) presented neutralizing antibodies for flaviviruses, 89 (20.4%) for SLEV and five (1.1%) for WNV. No evidence of SLEV and WNV infection was detected by RT-qPCR and, thus, such infection could not be confirmed in the additional samples. Our findings indicate horses of Rio de Janeiro were exposed to SLEV and WNV, contributing to the current knowledge on the distribution of these viruses in Brazil.


Assuntos
Encefalite de St. Louis , Flavivirus , Doenças dos Cavalos , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Cavalos , Vírus do Nilo Ocidental/genética , Encefalite de St. Louis/epidemiologia , Encefalite de St. Louis/veterinária , Brasil/epidemiologia , Anticorpos Antivirais , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Anticorpos Neutralizantes , Doenças dos Cavalos/epidemiologia
18.
Viruses ; 14(8)2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893693

RESUMO

Acutely infectious new world alphaviruses such as Venezuelan Equine Encephalitis Virus (VEEV) pose important challenges to the human population due to a lack of effective therapeutic intervention strategies. Small interfering RNAs that can selectively target the viral genome (vsiRNAs) has been observed to offer survival advantages in several in vitro and in vivo models of acute virus infections, including alphaviruses such as Chikungunya virus and filoviruses such as Ebola virus. In this study, novel vsiRNAs that targeted conserved regions in the nonstructural and structural genes of the VEEV genome were designed and evaluated for antiviral activity in mammalian cells in the context of VEEV infection. The data demonstrate that vsiRNAs were able to effectively decrease the infectious virus titer at earlier time points post infection in the context of the attenuated TC-83 strain and the virulent Trinidad Donkey strain, while the inhibition was overcome at later time points. Depletion of Argonaute 2 protein (Ago2), the catalytic component of the RISC complex, negated the inhibitory effect of the vsiRNAs, underscoring the involvement of the siRNA pathway in the inhibition process. Depletion of the RNAi pathway proteins Dicer, MOV10, TRBP2 and Matrin 3 decreased viral load in infected cells, alluding to an impact of the RNAi pathway in the establishment of a productive infection. Additional studies focused on rational combinations of effective vsiRNAs and delivery strategies to confer better in vivo bioavailability and distribution to key target tissues such as the brain can provide effective solutions to treat encephalitic diseases resulting from alphavirus infections.


Assuntos
Vírus da Encefalite Equina Venezuelana , RNA Interferente Pequeno , Animais , Linhagem Celular , Vírus da Encefalite Equina Venezuelana/fisiologia , Cavalos , Humanos , RNA Helicases , RNA Interferente Pequeno/farmacologia , Replicação Viral
19.
Emerg Infect Dis ; 28(7): 1393-1402, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35731160

RESUMO

In Argentina, the Pampa ecoregion has been almost completely transformed into agroecosystems. To evaluate the environmental (agricultural area, tree coverage, distance to the nearest water body and urban site) and biological (dove, cowbird, and sparrow abundance) effects on free-ranging bird exposure to St. Louis encephalitis virus (SLEV) and West Nile virus (WNV), we used generalized linear mixed models. For 1,019 birds sampled during 2017-2019, neutralizing antibodies were found against SLEV in samples from 60 (5.8%) birds and against WNV for 21 (2.1%). The best variable for explaining SLEV seroprevalence was agricultural area, which had a positive effect; however, for WNV, no model was conclusive. Our results suggest that agroecosystems in the La Pampa ecoregion increase the exposure of avian hosts to SLEV, thus potentially increasing virus activity.


Assuntos
Doenças das Aves , Encefalite de St. Louis , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Argentina/epidemiologia , Aves , Vírus da Encefalite de St. Louis , Encefalite de St. Louis/epidemiologia , Encefalite de St. Louis/veterinária , Estudos Soroepidemiológicos , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária
20.
Artigo em Inglês | MEDLINE | ID: mdl-35262074

RESUMO

Background: Venezuelan equine encephalitis virus (VEEV) is an arbovirus endemic to the Americas. There are no approved vaccines or antivirals. TC-83 and V3526 are the best-characterized vaccine candidates for VEEV. Both are live-attenuated vaccines and have been associated with safety concerns, albeit less so for V3526. A previous attempt to improve the TC-83 vaccine focused on further attenuating the vaccine by adding mutations that altered the error incorporation rate of the RNA-dependent RNA polymerase (RdRp). Methods: The research presented here examines the impact of these RdRp mutations in V3526 by cloning the 3X and 4X strains, assessing vaccine efficacy against challenge in adult female CD-1 mice, examining neutralizing antibody titers, investigating vaccine tissue tropism, and testing the stability of the mutant strains. Results: Our results show that the V3526 RdRp mutants exhibited reduced tissue tropism in the spleen and kidney compared to wild-type V3526, while maintaining vaccine efficacy. Illumina sequencing showed that the RdRp mutations could revert to wild-type V3526. Conclusions: The observed genotypic reversion is likely of limited concern because wild-type V3526 is still an effective vaccine capable of providing protection. Our results indicate that the V3526 RdRp mutants may be a safer vaccine design than the original V3526.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA