Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 366: 130531, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34284182

RESUMO

Phytochemical electrophiles are drawing significant attention due to their properties to modulate signaling pathways related to cellular homeostasis. The aim of this study was to develop new tools to examine the electrophilic activity in food and predict their beneficial effects on health. We developed a spectrophotometric assay based on the nitrobenzenethiol (NBT) reactivity, as a thiol-reactive nucleophile, to screen electrophiles in tomato fruits. The method is robust, simple, inexpensive, and could be applied to other types of food. We quantified the electrophile activity in a tomato collection and associated this activity with the pigment composition. Thus, we identified lycopene, ß- and γ-carotenes, 16 by-products of carotenoid oxidation and 18 unknown compounds as NBT-reactive by HPLC-MS/MS. The potential benefits of NBT-reactive compounds on health were evaluated in the in vivo model of C. elegans where they activated the SKN-1/Nrf2 pathway, evidencing the ability of electrophilic compounds to induce a biological response.


Assuntos
Proteínas de Caenorhabditis elegans , Solanum lycopersicum , Animais , Caenorhabditis elegans/genética , Proteínas de Ligação a DNA , Suplementos Nutricionais , Fator 2 Relacionado a NF-E2/genética , Espectrometria de Massas em Tandem , Fatores de Transcrição
2.
Free Radic Res ; 55(4): 416-440, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33494620

RESUMO

Cholesterol is an essential component of mammalian plasma membranes. Alterations in sterol metabolism or oxidation have been linked to various pathological conditions, including cardiovascular diseases, cancer, and neurodegenerative disorders. Unsaturated sterols are vulnerable to oxidation induced by singlet oxygen and other reactive oxygen species. This process yields reactive sterol oxidation products, including hydroperoxides, epoxides as well as aldehydes. These oxysterols, in particular those with high electrophilicity, can modify nucleophilic sites in biomolecules and affect many cellular functions. Here, we review the generation and measurement of reactive sterol oxidation products with emphasis on cholesterol hydroperoxides and aldehyde derivatives (electrophilic oxysterols) and their effects on protein modifications.


Assuntos
Oxisteróis/metabolismo , Proteínas/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Animais , Colesterol/análogos & derivados , Colesterol/química , Colesterol/metabolismo , Humanos , Oxisteróis/química , Proteínas/química
3.
Data Brief ; 31: 105850, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32613040

RESUMO

Metal-deficient Cu,Zn-superoxide dismutase (apo-SOD1) is associated with the formation of SOD1 aggregates that accumulate in ALS disease. The data supplied in this article support the accompanying publication showing SOD1 modification and aggregation induced by lipid aldehydes [1]. Here, we present the LC-MS/MS dataset on apo-SOD1 modification induced by seven different lipid aldehydes: 4-hydroxy-2-hexenal (HHE), 4-hydroxy-2-nonenal (HNE), 2-hexen-1-al (HEX), 2,4-nonadienal (NON), 2,4-decadienal (DEC) or secosterol aldehydes (SECO-A or SECO-B). Modified protein samples were digested with trypsin and sequenced by a LC coupled to a Q-TOF instrument. Protein sequencing and peptide modification analysis was performed by Mascot 2.6 (Matrix Science) and further validated by manual inspection. Mass spectrometry data (RAW files) obtained in this study have been deposited to MassIVE and the observed peptide-aldehyde adducts can be used in further studies exploring SOD1 modifications in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA