Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Am J Bot ; 111(7): e16373, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39010314

RESUMO

PREMISE: Salt tolerance has rarely been investigated regionally in the neotropics and even more rarely in Orchidaceae, one of the largest families. Therefore, investigating local adaptation to salt spray and its physiological basis in Epidendrum fulgens, a neotropical orchid species, brings important new insights. METHODS: We assessed the degree of salt tolerance in E. fulgens by testing whether coastal populations are more tolerant to salt, which could point to local adaptation. To understand the physiological basis of such salt tolerance, we exposed wild-collected individuals to salt spray for 60 days, then measured leaf expansion, osmotic potential, sodium leaf concentration, chlorophyll leaf index, chlorophyll fluorescence, relative growth rate, and pressure-volume curves. RESULTS: There is no local adaptation to salt spray since both inland and coastal plants have a high tolerance to salt stress. This tolerance is explained by the ability to tolerate high concentrations of salt in leaf tissues, which is related to the high succulence displayed by this species. CONCLUSIONS: We showed an unprecedented salt tolerance level for an orchid species, highlighting our limited knowledge of that trait beyond the traditional studied groups. Another interesting finding is that salt tolerance in E. fulgens is linked to succulence, is widespread, and is not the result of local adaptation. We suggest that E. fulgens and its allied species could be an interesting group to explore the evolution of important traits related to tolerance to salt stress, like succulence.


Assuntos
Adaptação Fisiológica , Orchidaceae , Folhas de Planta , Tolerância ao Sal , Orchidaceae/fisiologia , Orchidaceae/efeitos dos fármacos , Folhas de Planta/fisiologia , Folhas de Planta/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Clorofila/metabolismo , Sódio/metabolismo , Clima Tropical
2.
PeerJ ; 12: e17705, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040933

RESUMO

The impact of temperature on reptile physiology has been examined through two main parameters: locomotor performance and metabolic rates. Among reptiles, different species may respond to environmental temperatures in distinct ways, depending on their thermal sensitivity. Such variation can be linked to the ecological lifestyle of the species and needs to be taken into consideration when assessing the thermal influence on physiology. This is particularly relevant for snakes, which are a very functionally diverse group. In this study, our aim was to analyze the thermal sensitivity of locomotor performance and resting metabolic rate (RMR) in three snake species from central Mexico (Crotalus polystictus, Conopsis lineata, and Thamnophis melanogaster), highlighting how it is influenced by their distinctive behavioral and ecological traits. We tested both physiological parameters in five thermal treatments: 15 °C, 25 °C, 30 °C, 33 °C, and 36 °C. Using the performance data, we developed thermal performance curves (TPCs) for each species and analyzed the RMR data using generalized linear mixed models. The optimal temperature for locomotion of C. polystictus falls near its critical thermal maximum, suggesting that it can maintain performance at high temperatures but with a narrow thermal safety margin. T. melanogaster exhibited the fastest swimming speeds and the highest mass-adjusted RMR. This aligns with our expectations since it is an active forager, a high energy demand mode. The three species have a wide performance breadth, which suggests that they are thermal generalists that can maintain performance over a wide interval of temperatures. This can be beneficial to C. lineata in its cold habitat, since such a characteristic has been found to allow some species to maintain adequate performance levels in suboptimal temperatures. RMR increased along with temperature, but the proportional surge was not uniform since thermal sensitivity measured through Q10 increased at the low and high thermal treatments. High Q10 at low temperatures could be an adaptation to maintain favorable performance in suboptimal temperatures, whereas high Q10 at high temperatures could facilitate physiological responses to heat stress. Overall, our results show different physiological adaptations of the three species to the environments they inhabit. Their different activity patterns and foraging habits are closely linked to these adaptations. Further studies of other populations with different climatic conditions would provide valuable information to complement our current understanding of the effect of environmental properties on snake physiology.


Assuntos
Temperatura , Animais , México , Metabolismo Basal/fisiologia , Locomoção/fisiologia , Crotalus/fisiologia , Especificidade da Espécie
3.
Plants (Basel) ; 13(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38931030

RESUMO

Water scarcity is a significant constraint on agricultural practices, particularly in Colombia, where numerous palm cultivators rely on rainfed systems for their plantations. Identifying drought-tolerant cultivars becomes pivotal to mitigating the detrimental impacts of water stress on growth and productivity. This study scrutinizes the variability in drought responses of growth, physiological, and biochemical variables integral to selecting drought-tolerant oil palm cultivars in the nursery. A comprehensive dataset was compiled by subjecting seedlings of eleven cultivars to four soil water potentials (-0.05 MPa, -0.5 MPa, -1 MPa, and -2 MPa) over 60 days. This dataset encompasses growth attributes, photosynthetic parameters like maximum quantum yield and electron transfer rate, gas exchange (photosynthesis, transpiration, and water use efficiency), levels of osmolytes (proline and sugars), abscisic acid (ABA) content, as well as antioxidant-related enzymes, including peroxidase, catalase, ascorbate peroxidase, glutathione reductase, and superoxide dismutase. Principal Component Analysis (PCA) elucidated two principal components that account for approximately 65% of the cumulative variance. Noteworthy enzyme activity was detected for glutathione reductase and ascorbate peroxidase. When juxtaposed with the other evaluated cultivars, one of the cultivars (IRHO 7001) exhibited the most robust response to water deficit. The six characteristics evaluated (photosynthesis, predawn water potential, proline, transpiration, catalase activity, sugars) were determined to be the most discriminant when selecting palm oil cultivars with tolerance to water deficit.

4.
J Exp Zool A Ecol Integr Physiol ; 341(4): 400-409, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38356256

RESUMO

Changes in environmental temperature may induce variations in thermal tolerance and sensitivity in ectotherm organisms. These variations generate plastic responses that can be analyzed by examining their Thermal Performance Curves (TPCs). Additionally, some performance traits, like locomotion, could be affected by other factors such as biological interactions (e.g., predator-prey interaction). Here, we evaluate if the risk of predation modifies TPCs in Mendoza four-eyed frog (Pleurodema nebulosum, Burmeister, 1861) and Guayapa's four-eyed frog (Pleurodema guayapae, Barrio, 1964), two amphibian species that occur in ephemeral ponds in arid environments. We measured thermal tolerances and maximum swimming velocity at six different temperatures in tadpoles under three situations: control, exposure to predator chemical cues, and exposure to conspecific alarm cues. TPCs were fitted using General Additive Mixed Models. We found that curves of tadpoles at risk of predation differed from those of control mainly in thermal sensitivity parameters. Our work confirms the importance of biotic interactions have in thermal physiology.


Assuntos
Anuros , Comportamento Predatório , Animais , Larva/fisiologia , Anuros/fisiologia , Natação/fisiologia , Temperatura
5.
J Phycol ; 60(2): 483-502, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38264946

RESUMO

Kelp communities are experiencing exacerbated heat-related impacts from more intense, frequent, and deeper marine heatwaves (MHWs), imperiling the long-term survival of kelp forests in the climate change scenario. The occurrence of deep thermal anomalies is of critical importance, as elevated temperatures can impact kelp populations across their entire bathymetric range. This study evaluates the impact of MHWs on mature sporophytes of Pterygophora californica (walking kelp) from the bathymetric extremes (8-10 vs. 25-27 m) of a population situated in Baja California (Mexico). The location is near the southernmost point of the species's broad distribution (from Alaska to Mexico). The study investigated the ecophysiological responses (e.g., photobiology, nitrate uptake, oxidative stress) and growth of adult sporophytes through a two-phase experiment: warming simulating a MHW and a post-MHW phase without warming. Generally, the effects of warming differed depending on the bathymetric origin of the sporophytes. The MHW facilitated essential metabolic functions of deep-water sporophytes, including photosynthesis, and promoted their growth. In contrast, shallow-water sporophytes displayed metabolic stress, reduced growth, and oxidative damage. Upon the cessation of warming, certain responses, such as a decline in nitrate uptake and net productivity, became evident in shallow-water sporophytes, implying a delay in heat-stress response. This indicates that variation in temperatures can result in more prominent effects than warming alone. The greater heat tolerance of sporophytes in deeper waters shows convincing evidence that deep portions of P. californica populations have the potential to serve as refuges from the harmful impacts of MHWs on shallow reefs.


Assuntos
Kelp , Nitratos , México , Temperatura Alta , Água , Ecossistema
6.
Mar Pollut Bull ; 199: 115943, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176159

RESUMO

The surfgrass Phyllospadix scouleri grows in highly productive meadows along the Pacific coast of North America. This region has experienced increasingly severe marine heatwaves (MHWs) in recent years. Our study evaluated the impact of consecutive MHWs, simulated in mesocosms, on essential ecophysiological features of P. scouleri. Overall, our findings show that the plants' overall physiological status has been progressively declining. Interestingly, the indicators of physiological stress in photosynthesis only showed up once the initial heat exposure stopped (i.e., during the recovery period). The warming caused increased oxidative damage and a decrease in nitrate uptake rates. However, the levels of non-structural carbohydrates and relative growth rates were not affected. Our findings emphasize the significance of incorporating recovery periods in this type of study as they expose delayed stress responses. Furthermore, experiencing consecutive intense MHWs can harm surfgrasses over time, compromising the health of their meadows and the services they offer to the ecosystem.


Assuntos
Ecossistema , Zosteraceae , Estresse Fisiológico , Fotossíntese , Carboidratos
7.
Rev. biol. trop ; Rev. biol. trop;71(1)dic. 2023.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1449503

RESUMO

Introduction: Defined seasonality in savanna species can stimulate physiological responses that maximize photosynthetic metabolism and productivity. However, those physiological responses are also linked to the phenological status of the whole plant, including leaf phenophases. Objective: To study how physiological traits influence phenophase timing among congeneric and co-occurring savanna species. Methods: We evaluated the leaf phenology and physiological traits of populations of Byrsonima intermedia, B. coccolobifolia, and B. verbascifolia. Physiological measurements were performed at the onset of the dry and rainy seasons and again late in the season. Results: B. intermedia and B. coccolobifolia were classified as brevideciduous and B. verbascifolia as evergreen. The maximum quantum yield for B. intermedia and B. coccolobifolia were lowest during the dry season. At the onset of the dry period, the highest chloroplastidic pigment levels were observed, which decreased as the season advanced, total chlorophyll/carotenoid ratios were lowest, and carotenoid contents were highest. We detected low starch content values at the start of the rainy season, coinciding with the resumption of plant growth. Two months into this season, the leaves were at their peak structural and functional maturity, with high water-soluble polysaccharide values and photosynthetic rates, and were storing large amounts of starch. Conclusions: Physiological and leaf phenological strategies of the Byrsonima species were related to drought resistance and acclimatization to the seasonality of savanna water resources. The oscillations of the parameters quantified during the year indicated a strong relationship with water seasonality and with the phenological status of the leaves.


Introducción: La marcada estacionalidad en las especies de sabana puede estimular respuestas fisiológicas que maximicen el metabolismo fotosintético y la productividad. Sin embargo, esas respuestas fisiológicas están vinculadas al estado fenológico de toda la planta, incluidas las fenofases de las hojas. Objetivo: Estudiar cómo los rasgos fisiológicos influyen en el tiempo de la fenofase entre especies de sabana congenéricas y concurrentes. Métodos: Evaluamos la fenología y características fisiológicas de poblaciones de Byrsonima intermedia, B. coccolobifolia y B. verbascifolia. Las mediciones fisiológicas se realizaron al inicio de la estación seca y lluviosa, y de nuevo al final de la estación. Resultados: B. intermedia y B. coccolobifolia se clasificaron como brevicaducifolias y B. verbascifolia como perennifolias. El rendimiento cuántico máximo para B. intermedia y B. coccolobifolia fueron más bajos durante la época seca. Al inicio del período seco, se observaron niveles de pigmentos cloroplastídicos más altos, aunque los niveles de clorofila disminuyeron a medida que avanzaba la estación seca, las proporciones clorofila/carotenoides totales fueron más bajas y los contenidos de carotenoides más altos. Detectamos valores bajos de contenido de almidón al inicio de la época lluviosa, que coincide con la reanudación del crecimiento de la planta. A dos meses de esta época, las hojas estaban en su máxima madurez estructural y funcional, con altos valores de polisacáridos solubles en agua y tasas fotosintéticas, y almacenaban grandes cantidades de almidón. Conclusiones: Las estrategias fisiológicas y fenológicas de las hojas de las especies de Byrsonima estaban relacionadas con la resistencia a la sequía y la aclimatación a la estacionalidad de los recursos hídricos de la sabana. Las oscilaciones de los parámetros cuantificados durante el año indicaron una fuerte relación con la estacionalidad hídrica y con los estados fenológicos de las hojas.

8.
AoB Plants ; 15(5): plad068, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37899976

RESUMO

In the temperate forests of Patagonia, Argentina, Nothofagus dombeyi, commonly known as Coihue, has shown sensitivity to intense drought events, leading to mortality. Studies have been conducted on Coihue decline and mortality using a variety of approaches, including the role of extreme heat waves and drought, pests and pathogens, particularly the fungus Huntiella decorticans. This work aimed to evaluate survival, vitality, necrosis extension and growth response of inoculated and non-inoculated Coihue seedlings from different provenances exposed to different soil moisture levels. To achieve this goal, 96 Coihue seedlings from 2 different provenances were assigned to 8 different experimental treatments. Treatments were composed of the presence or absence of H. decorticans and different soil moisture content conditions, dry, wet and the exposure to dry condition at different times of the experiment. Both dry conditions and H. decorticans had negative effects on the survival and growth rate of Coihue. The combination of both factors resulted in 100 % mortality, regardless of the plants' geographical provenances. Mortality began to be observed 3 months after pathogen inoculation, during the warmest month. Necrosis extension produced by the pathogen was similar for most of the inoculated treatments. The treatment under wet condition during the experiment but subjected to dry condition in the previous growing season presented lower necrosis extension (8.4 ±â€…3.2 %), than the other treatments. The radial increase was also affected by the treatments and geographical provenance, being those plants exposed to dry conditions which grew less (0.19 ±â€…0.21 mm). This study enhances our understanding of the plant-pathogen interaction. According to our results, Coihue may become more susceptible to mortality, when H. decorticans and water deficit conditions act synergistically.

9.
Tree Physiol ; 43(12): 2085-2097, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37672256

RESUMO

Polylepis trees occur throughout the Andean mountain region, and it is the tree genus that grows at the highest elevation worldwide. In the humid Andes where moisture is rarely limiting, Polylepis trees must adapt to extreme environmental conditions, especially rapid fluctuations in temperature, ultraviolet radiation and vapor pressure deficit (VPD). However, Polylepis' water-use patterns remain largely unknown despite the importance of understanding their response to microclimate variation to determine their capacity to maintain resilience under future environmental change. We conducted a study in a Polylepis reticulata Kunth forest in the Ecuadorian Andes to evaluate its tree water-use dynamics and to identify the main environmental drivers of transpiration. Tree sap flow was monitored simultaneously with soil volumetric water content (VWC) and microclimate during 2 years for trees growing in forest edge and interior locations. We found that sap flow was primarily controlled by VPD and that VWC exerted a secondary role in driving sap flow dynamics. The highest values for sap flow rates were found when VPD > 0.15 kPa and VCW < 0.73 cm3 cm-3, but these threshold conditions only occurred during brief periods of time and were only found in 11% of our measurements. Moreover, these brief windows of more favorable conditions occurred more frequently in forest edge compared with forest interior locations, resulting in edge trees maintaining 46% higher sap flow compared with interior trees. Our results also suggest that P. reticulata has a low stomatal control of transpiration, as the sap flow did not decline with increasing VPD. This research provides valuable information about the potential impacts of projected future increases in VPD due to climate change on P. reticulata water-use dynamics, which include higher sap flow rates leading to greater transpirational water loss due to this species' poor stomatal control.


Assuntos
Árvores , Água , Árvores/fisiologia , Água/fisiologia , Altitude , Raios Ultravioleta , Transpiração Vegetal/fisiologia , Florestas , Solo
10.
Artigo em Inglês | MEDLINE | ID: mdl-37421990

RESUMO

Water is of fundamental importance to living organisms, not only as a universal solvent to maintain metabolic activity but also due to the effects the physical properties of water have on different organismal structures. In this review, we explore some examples of how living organisms deal with surfaces covered with or in contact with water. While we do not intend to describe all possible forms of interactions in every minute detail, we would like to draw attention to this intriguing interdisciplinary subject and discuss the positive and negative effects of the interaction forces between water molecules and organisms. Topics explored include locomotion on water, wettability of surfaces, benefits of retaining a film of air while submerged (Salvinia effect), surface tension of water inhibiting air-breathing, accumulation of water in small tubes, surface tension in non-mammalian and mammalian respiratory systems. In each topic, we address the importance of interactions with water and the adaptations seen in an organism to solve the surface-related challenges, trying to explore the different selective pressures acting onto different organisms allowing exploring or compensating these surface-related interactions.


Assuntos
Mamíferos , Água , Animais , Tensão Superficial , Molhabilidade , Solventes , Água/química
11.
J Exp Zool A Ecol Integr Physiol ; 339(9): 887-897, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37522484

RESUMO

Ocypode quadrata, a Ghost crab species found along the western Atlantic coast, is considered a bioindicator of anthropogenic impact on sandy beaches. Ghost Crabbing, a touristic activity in which ghost crabs are chased just for fun, is a potentially threatening activity for this crab. In crustaceans, metabolites such as glucose and lactate, and the gene expression of crustacean hyperglycemic hormone (CHH) and heat shock proteins (HSPs) increase when the animals are exposed to several types of stress, including alterations in temperature, salinity, or exposure to xenobiotics. This work was developed to identify if being chased by humans would affect these markers of stress in this species of crab. The effects of chasing stress on hemolymph and tissue metabolites and the gene expression levels of CHH and HSP70 were investigated. The levels of lactate in the hemolymph of stressed crabs were six times higher than those of control crabs immediately after chasing and decreased progressively during recovery, indicating an active anaerobic metabolism during the stress. On the contrary, glucose levels in the hemolymph of the stressed crabs increased progressively from 30 to 60 min after chasing, indicating an inverse correlation between glucose and lactate and the conversion of lactate to glucose by gluconeogenesis. In stressed crabs, the levels of triglycerides in the hemolymph decreased 30 min after chasing, while the opposite tended to occur in the hepatopancreas, indicating that during recovery, the crabs use triglycerides as energy source to sustain aerobic metabolism. Finally, this study demonstrates that ghost crabs are stressed by minimum human contact and that "ghost crabbing" must not be encouraged as a tourist activity.


Assuntos
Braquiúros , Humanos , Animais , Braquiúros/fisiologia , Glucose/metabolismo , Triglicerídeos , Lactatos
12.
Pathogens ; 12(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37242406

RESUMO

Fusarium cerealis is a causal agent of Fusarium Head Blight in wheat, and it produces both deoxynivalenol (DON) and nivalenol (NIV). Nevertheless, the effect of environmental factors on the growth and mycotoxin production of this species has not been studied so far. The objective of this study was to investigate the impact of environmental factors on the growth and mycotoxin production of F. cerealis strains. All strains were able to grow in a wide range of water activity (aW) and temperatures, but their mycotoxin production was influenced by strain and environmental factors. NIV was produced at high aW and temperatures, while optimal conditions for DON production were observed at low aW. Interestingly, some strains were able to simultaneously produce both toxins, which could pose a more significant risk for grain contamination.

13.
Pathogens ; 12(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37111449

RESUMO

Chickpea is susceptible to fungal infection and mycotoxin contamination. Argentina exports most of its chickpea production; thus, its quality is of concern. The Alternaria fungal genus was found to be prevalent in chickpea samples from Argentina. The species within this genus are able to produce mycotoxins, such as alternariol (AOH), alternariol monomethyl ether (AME), and tenuazonic acid (TA). In this context, we evaluated the effect of water activity (0.99, 0.98, 0.96, 0.95, 0.94, 0.92, and 0.90 aW), temperature (4, 15, 25, and 30 °C), incubation time (7, 14, 21, and 28 days), and their interactions on mycelial growth and AOH, AME, and TA production on chickpea-based medium by two A. alternata strains and one A. arborescens strain isolated from chickpea in Argentina. Maximum growth rates were obtained at the highest aW (0.99) and 25 °C, with growth decreasing as the aW of the medium and the temperature were reduced. A. arborescens grew significantly faster than A. alternata. Mycotoxin production was affected by both variables (aW and temperature), and the pattern obtained was dependent on the strains/species evaluated. In general, both A. alternata strains produced maximum amounts of AOH and AME at 30 °C and 0.99-0.98 aW, while for TA production, both strains behaved completely differently (maximum levels at 25 °C and 0.96 aW for one strain and 30 °C and 0.98 aW for the other). A. arborescens produced maximum amounts of the three toxins at 25 °C and 0.98 aW. Temperature and aW conditions for mycotoxin production were slightly narrower than those for growth. Temperature and aW conditions assayed are those found during chickpea grain development in the field, and also could be present during storage. This study provides useful data on the conditions representing a risk for contamination of chickpea by Alternaria toxins.

14.
Sci Total Environ ; 870: 161915, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36736413

RESUMO

Accumulating reports of negative impacts of tourist activities on wildlife emphasize the importance of closely monitoring focal populations. Although some effects are readily noticed, more subtle ones such as changes in physiological functions of individuals might go overlooked. Based on evidence of altered physiology associated with ecotourism on Magellanic penguins Spheniscus magellanicus, here we performed an integrated assessment using a diverse physiological toolkit together with more traditional fitness-related measures to better understand mechanisms and potential consequences. Chicks exposed to tourism showed altered immune parameters and elevated flea prevalence, reinforcing previous findings. Tourism-exposed female, but not male, chicks also showed relatively lower hematocrit and plasma protein levels, providing evidence consistent with a sex-specific response to tourist visitation. Physiological alterations detected in tourism-exposed young chicks (week 1-2) were maintained and the effect on flea infestation increased during the study period (week 4-5 of post-hatch). Despite the effects on physiology, these did not seem to translate into immediate fitness costs. No detectable tourism effects were found on brood sex ratios, chick growth and body condition, and survival until week 5-6 post-hatch. We detected no effects on reproductive output and only a marginal effect on nest survival during incubation despite previous reports of tourism-associated alterations in stress indices of adults. This disconnection could result if the physiological changes are not strong enough to impact fitness, if effects balance each other out, or if changes are part of a copying strategy. Alternatively, the physiological alterations might only show impacts later in the brooding cycle or even after chick emancipation from their parents. Our results suggest that integrative monitoring of potential anthropogenic impacts on wildlife should include evaluation of physiological mechanisms and individual-level responses in populations exposed to human activities.


Assuntos
Spheniscidae , Animais , Masculino , Humanos , Feminino , Spheniscidae/fisiologia , Animais Selvagens/fisiologia , Reprodução , Proteínas Sanguíneas , Turismo
15.
J Therm Biol ; 112: 103462, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36796907

RESUMO

In seasonally dry ecosystems, loss of vegetation cover leads to warmer microclimates that can increase lizards' body temperatures to the point of threatening their performance. Preserving vegetation by establishing protected areas may mitigate these effects. We used remote sensing to test these ideas in the Sierra de Huautla Biosphere Reserve (REBIOSH) and surrounding areas. First, we determined whether vegetation cover was higher in the REBIOSH compared to adjacent unprotected areas to the north (NAA) and south (SAA). Then, we used a mechanistic niche model to test whether simulated Sceloporus horridus lizards in the REBIOSH experienced a cooler microclimate, higher thermal safety margin, longer foraging duration, and lower basal metabolic rate compared to adjacent unprotected areas. We compared these variables between 1999, when the reserve was declared, and 2020. We found that vegetation cover increased from 1999 to 2020 in all three areas; it was higher in the REBIOSH than in the more anthropized NAA, and was intermediate in the less anthropized SAA in both years. The microclimate temperature decreased from 1999 to 2020 and was lower in the REBIOSH and SAA than in the NAA. Thermal safety margin increased from 1999 to 2020; it was higher in the REBIOSH than in the NAA and intermediate in the SAA. Foraging duration increased from 1999 to 2020 and was similar among the three polygons. Basal metabolic rate decreased from 1999 to 2020 and was higher in the NAA than in the REBIOSH and SAA. Our results suggest that the REBIOSH provides cooler microclimates that increase the thermal safety margin and lower the metabolic rate of this generalist lizard compared to the NAA, and that the REBIOSH could contribute to increased vegetation cover in its surroundings. Besides, protecting original vegetation cover is an important part of climate change mitigation strategies more generally.


Assuntos
Ecossistema , Lagartos , Animais , México , Florestas , Temperatura
16.
Rev. bras. entomol ; Rev. bras. entomol;67(2): e20220099, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1441262

RESUMO

ABSTRACT Temperature affects the body size of animals, which is an important trait in natural and sexual selection. Insects do not have complex mechanisms of temperature control, thus temperature changes affect their life aspects, from enzymatic reactions to behavior. The amount of fat stored by insects is also influenced by temperature and constitutes a tissue with biosynthetic and metabolic activity, acting as an energy reservoir. We assessed the effect of environmental temperature due to elevation and seasonal temperature variations on body size and condition of two dung beetles species: Canthon rutilans cyanescens and Dichotomius sericeus (Coleoptera: Scarabaeinae). Both species are abundant in southern Brazilian forests, but they differ in habits: the first is a diurnal roller whereas the later is a nocturnal tunneler. Summer months and sites with lower elevations and higher temperatures presented larger C. rutilans cyanescens. A linear relationship exists between body size and soil temperatures, whereas the temperature positively influences the body length. Furthermore, C. rutilans cyanescens from cooler sites had more body fat. Individuals of D. sericeus were also larger in summer months, however, we did not find differences in the proportion of fat or a relation between body size and temperature. Thus, the body size of dung beetle species varies in relation to temporal factors, as both species are larger in summer. More interesting was to observe that the species with a diurnal habit, even though smaller in colder places, has a higher proportion of fat, which indicates an evolutionary response to environmental pressure.

17.
Plants (Basel) ; 11(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36365407

RESUMO

Phosphorus (P) reacts with soil minerals, which makes it less available to plants. Considering that Amazonian soils have a low pH and nutrient availability, both of these properties contribute to an increase in P limitation. Here, we investigate how the addition of P to the substrate affects morpho-physiological traits of Brazil nut trees (Bertholletia excelsa Bonpl.). The experiment was carried out in a greenhouse with 24-month-old saplings, and the P treatments consisted of a control (Ferrasol without P addition) and 100, 200, 400, and 500 mg P kg-1 of added to the soil. When B. excelsa saplings were fertilized with phosphate, the N:P leaf ratio reduced from 50 to 26. Addition of P favored the photochemical efficiency of PSII (FV/FM), and the application of 200 mg kg-1 increased photosynthesis (PN) by 50%. Furthermore, phosphorus enhanced light and nutrient use efficiency. An increase in B. excelsa dry biomass was observed when 200 mg P kg-1 was added, with maximum yield occurring at 306.2 mg P kg-1. Physiological parameters suggest robust responses by B. excelsa to P fertilization. In addition, our findings reveal the critical role of P on B. excelsa growth in Ferralsol, as well as the potential of P fertilization to improve functional traits of this important Amazonian tree.

18.
Int J Food Microbiol ; 379: 109841, 2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-35926400

RESUMO

The effect of water activity (aW; 0.87, 0.90, 0.92, 0.94, 0.96, 0.98 and 0.99), temperature (15, 25, and 30 °C), incubation time (5, 10, 14, and 21 days), and their interactions on mycelial growth and aflatoxin production in a chickpea-based medium by three Aspergillus flavus strains isolated from chickpea grains in Argentina was evaluated. Maximum growth rates were obtained at the highest aW (0.99) and 30 °C, with growth decreasing as the aW of the medium was reduced. Maximum levels of aflatoxins were produced at 0.99 aW and 25 °C after 5 days of incubation for two strains, and at 25 °C and 0.96 aW after 21 days of incubation for the third strain. The aflatoxin concentrations varied considerably depending on the aW and temperature interactions assayed. Two-dimensional profiles of aW by temperature interactions were developed from these data to identify areas where conditions indicate a significant risk from aflatoxin accumulation on chickpea. This study provides useful baseline data on conditions representing a high and a low risk for contamination of chickpea by aflatoxins which is of greater concern because this pulse is destined mainly for human consumption.


Assuntos
Aflatoxinas , Cicer , Aflatoxinas/análise , Aspergillus flavus , Humanos , Temperatura , Água
19.
Environ Sci Pollut Res Int ; 29(52): 79168-79183, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35708810

RESUMO

Currently, more than five years after the Fundão dam failure in Mariana, Minas Gerais, Brazil, Brachiaria decumbens Stapf. is the main grass in pasturelands affected by the mining tailings. The aim of this study was to investigate the reason for this fact as well as to determine the ecophysiological effects of mining tailings on B. decumbens and to test whether mixing the tailings with unaffected local soil enhances the affected soil properties. For the experiment, two different soils were collected, one unaffected soil without mining tailings (Ref) and the mining tailings (Tec), and we also created a mixture with 50 % of each soil type (Ref/Tec). We cultivated B. decumbens in the three soil treatments in a greenhouse for 110 days and evaluated soil physical-chemical properties and plant ecophysiology. Our results show that the tailings (Tec) compromised the normal ecophysiological state of B. decumbens. The species survived these adverse conditions due to its great efficiency in acquiring some elements. The soil management tested by this work mitigated the stress caused by tailings and can represent an alternative for the environmental recovery of the affected soils.


Assuntos
Brachiaria , Brasil , Mineração , Solo/química , Poaceae
20.
Environ Sci Pollut Res Int ; 29(29): 43501-43515, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35386087

RESUMO

Oil spills generate several environmental impacts and have become more common with the increase in petroleum extraction, refining, transportation, and trade. In soil, oil contamination increases water and nutrient availability and compaction, directly affecting plant growth and development. Different aspects of phytotoxicity can be observed and will vary according to the characteristics of soil and plants. Oil-contaminated soil also results in negative effects on biomass and changes in leaves and roots. Investigating the effects of oil contamination on plant growth and development can aid in the conservation of plant species and in the development of techniques such as bioremediation and biomonitoring. Thus, this review aims to discuss the main effects of oil contamination on plants, such as environmental stress and morphological, physiological, and anatomical changes, and the strategies developed by plants to survive contamination, as well as to identify plants with phytoremediation potential that can assist in removing oil from the environment.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Raízes de Plantas/química , Plantas , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA