Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Food Res Int ; 186: 114337, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729718

RESUMO

A major concern for wineries is haze formation in white wines due to protein instability. Despite its prevalent use, the conventional bentonite method has shortcomings, including potential alteration of color and aroma, slow processing times, and notable wine wastage. Zirconium oxide (ZrO2) effectively removes proteins without affecting wine characteristics. However, producing cost-effective ZrO2 materials with efficient protein removal capabilities poses a significant challenge. This research aims to assess the viability of designing a porous material impregnated with zirconia to remove turbidity-causing proteins effectively. For this purpose, the support material alone (Al2O3) and the zirconia-impregnated support (ZrO2/Al2O3) were subjected to different calcination temperatures. It was observed that high-temperature treatments (750 °C) enhanced wine stability and protein adsorption capacity. The optimal adsorbent achieved a notable reduction in turbidity, decreasing the ΔNTU from 42 to 18, alongside a significant 44 % reduction in the total protein content, particularly affecting proteins in the molecular weight range of 10 to 70 kDa. This result is attributed to modifying the textural properties of ZrO2/Al2O3, characterized by the reduction of acidic sites, augmented pore diameters from 4.81 to 7.74 nm, and the emergence of zirconia clusters across the surface of the porous support. In summary, this study presents the first application of zirconia on the alumina support surface for protein stabilization in white wine. Combining ZrO2/Al2O3 and a high-temperature treatment emerges as a promising, cost-efficient, and environmentally sustainable strategy for protein removal in white wine.


Assuntos
Óxido de Alumínio , Vinho , Zircônio , Vinho/análise , Zircônio/química , Óxido de Alumínio/química , Adsorção , Estabilidade Proteica , Temperatura Alta , Manipulação de Alimentos/métodos
2.
Heliyon ; 10(7): e28482, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601514

RESUMO

In recent years, the growth of Internet of Things devices has increased the use of sustainable energy sources. An alternative technology is offered by triboelectric nanogenerators (TENGs) that can harvest green energy and convert it into electrical energy. Herein, we assessed three different nopal powder types that were used as triboelectric layers of eco-friendly and sustainable TENGs for renewable energy harvesting from environmental vibrations and powering electronic devices. These nanogenerators were fabricated using waste and recycled materials with a compact design for easy transportation and collocation on non-homogeneous surfaces of different vibration or motion sources. In addition, these TENGs have advantages such as high output performance, stable output voltage, lightweight, low-cost materials, and a simple fabrication process. These nanogenerators use the contact-separation mode between two triboelectric layers to convert the vibration energy into electrical energy. TENG with the best output performance is based on dehydrated nopal powder, generating an output power density of 2.145 mWm-2 with a load resistance of 39.97 MΩ under 3g acceleration and 25 Hz operating frequency. The proposed TENGs have stable output voltages during 22500 operating cycles. These nanogenerators can light 116 ultra-bright blue commercial LEDs and power a digital calculator. Also, the TENGs can be used as a chess clock connected to a mobile phone app for smart motion sensing. These nanogenerators can harvest renewable vibration energy and power electronic devices, sensors, and smart motion sensing.

3.
Polymers (Basel) ; 16(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543458

RESUMO

It is known that ethylene plays an important role in the quality characteristics of fruits, especially in storage. To avoid the deterioration of fruits caused by ethylene, titanium dioxide (TiO2) has been used due to its photocatalytic capacity. The aim of this study was to develop films based on two types of biopolymers, Mater-Bi (MB) and poly-lactic acid (PLA), with nanoparticles of TiO2 and to determine their ethylene removal capacity and its application in bananas. First, the films were fabricated through an extrusion process with two different concentrations of TiO2 (5 and 10% w/w). Then, the films were characterized by their structural (FTIR), morphological (SEM), thermal (DSC and TGA), dynamic (DMA), barrier, and mechanical properties. The ethylene removal capacities of the samples were determined via gas chromatography and an in vivo study was also conducted with bananas for 10 days of storage. Regarding the characterization of the films, it was possible to determine that there was a higher interaction between PLA with nano-TiO2 than MB; moreover, TiO2 does not agglomerate and has a larger contact surface in PLA films. Because of this, a higher ethylene removal was also shown by PLA, especially with 5% TiO2. The in vivo study also showed that the 5% TiO2 films maintained their quality characteristics during the days in storage. For these reasons, it is possible to conclude that the films have the capacity to remove ethylene. Therefore, the development of TiO2 films is an excellent alternative for the preservation of fresh fruits.

4.
Talanta ; 272: 125814, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428135

RESUMO

3D-printing technology has revolutionized electrochemical applications by enabling rapid prototyping of various devices with high precision, even in highly complex structures. However, a significant challenge remains in developing less costly and more sustainable analytical approaches and methods aimed at mitigating the negative environmental impacts of chemical analysis procedures. In this study, we propose a solution to these challenges by creating a simple and versatile electrochemical system that combines 3D-printing technology with recyclable disposable materials, such as graphite from an exhausted battery and a stainless-steel screw. Our results demonstrate a novel strategy for developing electrodes and other laboratory-made devices that align with the principles of sustainability and green chemistry. Furthermore, we provide evidence of the effectiveness of the proposed system in an analytical application involving the simultaneous determination of tert-butylhydroquinone, acetaminophen, and levofloxacin using the voltammetric technique in lake and groundwater samples. The results indicate sufficient accuracy, with recovery values ranging from 91 to 110%. Additionally, we utilized the Analytical GREEnness calculator as a metric system to evaluate the environmental friendliness of the proposed electroanalytical protocol. The final score confirms a favorable level of sustainability, reaffirming the eco-friendly nature of our approach.

5.
Anal Bioanal Chem ; 416(7): 1541-1560, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38349534

RESUMO

The development and validation of a simple, comprehensive, and environment-friendly procedure to determine pesticide residues, naturally occurring and processing contaminants in roasted coffee is presented. A solid-liquid extraction of pesticides and mycotoxins with ethyl acetate and the concurrent partition of acrylamide to an aqueous phase follows a parallel analytical strategy that requires a single analytical portion to determine contaminants that are typically analyzed by dedicated single residue methods. The partition rules the lipids out of the aqueous extract before an "in-tube" dispersive solid phase microextraction (dSPME) for acrylamide retention. This is followed by the elution with buffer prior to injection. This extract is independently introduced into the system front end followed by the injection of the compounds from the organic phase, yet all spotted in the same run. A novel liquid chromatography high-resolution mass spectrometry (LC-HRMS) method setup enables the quantification of 186 compounds at 10 µg/kg, 226 at 5 µg/kg, and the acrylamide at 200 µg/kg for a total of 414 molecules, with acceptable recoveries (70-120%) and precision (RSD < 20%) making this strategy significantly faster and cost-effective than the dedicated single residue methods. Even though the presence of chlorpyrifos, acrylamide, and ochratoxin A was confirmed on samples of different origins, the findings were below the limit of quantification. During the storage of raw coffee, no proof of masking of OTA was found; however, condensation with glucose was evidenced during thermal processing experiments with sucrose by using stable isotope labeling (SIL). No detected conjugates were found in roasted nor in commercial sugar-added torrefacto samples, an industrial processing usually carried out above the decomposition temperature of the disaccharide.


Assuntos
Micotoxinas , Praguicidas , Café/química , Espectrometria de Massas em Tandem/métodos , Micotoxinas/análise , Praguicidas/análise , Acrilamida/análise
6.
Parasit Vectors ; 16(1): 415, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964392

RESUMO

BACKGROUND: Tick control is a worldwide challenge due to its resistance to acaricides. Essential oils (EOs) and isolated compounds (EOCs) are potential alternatives for tick control technologies. METHODS: A review with EOs and EOCs, under field and semi-field conditions, was performed based on Scopus, Web of Science and PubMed databases. Thirty-one studies published between 1991 and 2022 were selected. The search was performed using the following keywords: "essential oil" combined with "tick," "Ixodes," "Argas," "Rhipicephalus," "Amblyomma," "Hyalomma," "Dermacentor," "Haemaphysalis" and "Ornithodoros." The words "essential oil" and "tick" were searched in the singular and plural. RESULTS: The number of studies increased over the years. Brazil stands out with the largest number (51.6%) of publications. The most studied tick species were Rhipicephalus microplus (48.4%), Ixodes scapularis (19.4%), Amblyomma americanum and R. sanguineus sensu lato (9.7% each). Cattle (70%) and dogs (13%) were the main target animal species. Regarding the application of EOs/EOCs formulations, 74% of the studies were conducted with topical application (spray, pour-on, foam, drop) and 26% with environmental treatment (spray). Efficacy results are difficult to evaluate because of the lack of information on the methodology and standardization. The nanotechnology and combination with synthetic acaricides were reported as an alternative to enhance the efficacy of EOs/EOCs. No adverse reactions were observed in 86.6% of the studies evaluating EOs/EOCs clinical safety. Studies regarding toxicity in non-target species and residues are scarce. CONCLUSIONS: This article provides a comprehensive review on the use of EOs and EOCs to reduce tick infestations, in both the hosts and the environment. As future directions, we recommend the chemical characterization of EOs, methodology standardization, combination of EOs/EOCs with potential synergists, nanotechnology for new formulations and safety studies for target and non-target organisms, also considering the environmental friendliness.


Assuntos
Acaricidas , Doenças dos Bovinos , Doenças do Cão , Ixodes , Ixodidae , Óleos Voláteis , Rhipicephalus , Infestações por Carrapato , Animais , Cães , Bovinos , Óleos Voláteis/química , Acaricidas/farmacologia , Acaricidas/uso terapêutico , Infestações por Carrapato/tratamento farmacológico , Infestações por Carrapato/prevenção & controle , Infestações por Carrapato/veterinária , Amblyomma , Controle de Ácaros e Carrapatos/métodos , Doenças dos Bovinos/tratamento farmacológico , Doenças do Cão/tratamento farmacológico
7.
Nat Prod Res ; : 1-8, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950732

RESUMO

Polyamide fabrics were dyed with concentrations ranging from 4% to 0.25% (o.w.f.) of the natural dye, potassium norbixinate (annatto). The exhaustion, chromatic coordinates, colouristic intensity (K/S), and fastness to washing and rubbing were evaluated. The natural dye was characterised, and its maximum absorption peaks were identified at 452 nm and 482 nm through UV-vis scanning. Its main chemical groups were identified by FTIR-ATR. All dyeings exhibited high exhaustion percentage, with a maximum of 98.4% for 1% dye concentration. The dyed samples displayed visually appealing orange hues, with a maximum K/S value of 6.9. Most of the fastness test results were rated between 5 and 4/5, remaining within the standards established by most textile industries. Potassium norbixinate exhibited a similar tinctorial behaviour to synthetic acid dyes for polyamide, suggesting ionic chemical reaction interaction between dye and polyamide, highlighting the potential use in the textile industry.

8.
Polymers (Basel) ; 15(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37896427

RESUMO

Nowadays, biocomposites represent a new generation of materials that are environmentally friendly, cost-effective, low-density, and not derived from petroleum. They have been widely used to protect the environment and generate new alternatives in the polymer industry. In this study, we incorporated untreated jute fibers (UJFs) and alkaline-treated jute fibers (TJFs) at 1-5 and 10 phr into TSR 10 natural rubber as reinforcement fillers. These composites were produced to be used in countersole shoes manufacturing. Untreated fibers were compared to those treated with 10% sodium hydroxide. The alkali treatment allowed the incorporation of fibers without compromising their mechanical properties. The TJF samples exhibited 8% less hardness, 70% more tensile strength, and the same flexibility compared to their pure rubber counterparts. Thanks to their properties and ergonomic appearance, the composites obtained here can be useful in many applications: construction materials (sound insulating boards, and flooring materials), the automotive industry (interior moldings), the footwear industry (shoe soles), and anti-static moldings. These new compounds can be employed in innovative processes to reduce their carbon footprint and negative impact on our planet. Using the Lorenz-Park equation, the loaded composites examined in this study exhibited values above 0.7, which means a competitive load-rubber interaction. Scanning electron microscopy (SEM) was used to investigate the morphology of the composites in detail.

9.
Polymers (Basel) ; 15(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37631429

RESUMO

Ethylene is a phytohormone that is responsible of fruit and vegetable ripening. TiO2 has been studied as a possible solution to slowing down unwanted ripening processes, due to its photocatalytic capacity which enables it to remove ethylene. Thus, the objective of this study was to develop nanocomposites based on two types of eco-friendly materials: Mater-Bi® (MB) and poly(lactic acid) (PLA) combined with nano-TiO2 for ethylene removal and to determine their ethylene-removal capacity. First, a physical-chemical characterization of nano-TiO2 of different particle sizes (15, 21, 40 and 100 nm) was done through structural and morphological analysis (DRX, FTIR and TEM). Then, its photocatalytic activity and the ethylene-removal capacity were determined, evaluating the effects of time and the type of light irradiation. With respect to the analysis of TiO2 nanoparticles, the whole samples had an anatase structure. According to the photocatalytic activity, nanoparticles of 21 nm showed the highest activity against ethylene (~73%). The results also showed significant differences in ethylene-removal activity when comparing particle size and type and radiation time. Thus, 21 nm nano-TiO2 was used to produce nanocomposites through the melt-extrusion process to simulate industrial processing conditions. With respect to the nanocomposites' ethylene-removing properties, there were significant differences between TiO2 concentrations, with samples with 5% of active showed the highest activity (~57%). The results obtained are promising and new studies are needed to focus on changes in material format and the evaluation in ethylene-sensitive fruits.

10.
Sci Total Environ ; 901: 165952, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37536599

RESUMO

The growing use of synthetic chemical compounds/substances in vector control of mosquitoes, associated with their adverse effects on the environment and non-target organisms, has demanded the development of eco-friendly alternatives. In this context, this study aimed to evaluate the larvicidal action of different cellulose microcrystalline (CMs) concentrations and investigate their toxicity mechanisms in Culex quinquefasciatus fourth instar larvae as a model species. Probit analysis revealed that the median lethal concentrations (LC50) for 24 h and 36 h exposure were 100 and 58.29 mg/L, respectively. We also showed that such concentrations induced a redox imbalance in the larvae, marked by an increase in the production of reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS), as well as a reduction in the activity of superoxide dismutase (SOD) and catalase (CAT). Furthermore, different alterations in the external morphology of the larvae were associated with the ingestion of CMs. On the other hand, exposure of adult zebrafish (Danio rerio) to LC5024h and LC5036h for seven days did not induce any behavioral changes or alterations mutagenic, genotoxic, biochemical, or in the production of cytokines IFN-γ and IL-10. Thus, taken together, our study demonstrates for the first time that the use of CMs can constitute a promising strategy in the control of C. quinquefasciatus larvae, combining insecticidal efficiency with an "eco-friendly" approach in the fight against an important mosquito vector of several human diseases.

11.
Biology (Basel) ; 12(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37508394

RESUMO

Common bean (Phaseolus vulgaris L.) is an important crop for food security and for national economics for several countries worldwide. One of the most important factors of risk in common bean production is the fungal disease anthracnose caused by Colletotrichum lindemuthianum, which, in some cases, causes complete yield losses; this kind of plant disease is usually managed through the application of chemical products such as fungicides that are commonly not accepted by society. This rejection is based on the relationship of pesticides with health damage and environmental contamination. In order to help in solving these drawbacks, the present work proposes the use of electrochemically activated salt solutions (EASSs) as a safer pathogen control agent in crops, due to it having shown an elicitor and biostimulant effect on plants. With this background, this manuscript presents in vitro results of the evaluation of the inhibitory effect for multiple bean pathogens and in vivo results of EASS in the common bean-Colletotrichum pathosystem by evaluation of the infection severity and defense activation, such as secondary metabolite production and antioxidant activity. EASS presence in growth media had a strong inhibitory effect at the beginning of experiments for some of the evaluated fungi. EASSs showed an effect against the development of the disease when applied in specific doses to prevent distress in plants.

12.
Insects ; 14(4)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37103202

RESUMO

Biological control through the augmentative release of parasitoids is an important complementary tool that may be incorporated into other strategies for the eradication/eco-friendly control of pest fruit flies. However, not much information is available on the effectiveness of fruit fly parasitoids as biocontrol agents in semi-arid and temperate fruit-growing regions. Therefore, this study evaluated the effect of augmentative releases of the larval parasitoid Diachasmimorpha longicaudata (Ashmead) on Ceratitis capitata (Wiedemann) (medfly) populations over two fruit seasons (2013 and 2014) on a 10 ha irrigated fruit farm in San Juan province, central-western Argentina. The parasitoids were mass reared on irradiated medfly larvae of the Vienna-8 temperature-sensitive lethal genetic sexing strain. About 1692 (±108) parasitoids/ha were released per each of the 13 periods throughout each fruit season. Another similar farm was chosen as a control of non-parasitoid release. The numbers of captured adult flies in food-baited traps and of recovered fly puparia from sentinel fruits were considered the main variables to analyze the effect of parasitoid release on fly population suppression using a generalized least squares model. The results showed a significant decrease (p < 0.05) in the medfly population on the parasitoid release farm when compared to the Control farm, demonstrating the effectiveness of augmentative biological control using this exotic parasitoid. Thus, D. longicaudata could be used in combination with other medfly suppression strategies in the fruit production valleys of San Juan.

13.
Integr Environ Assess Manag ; 19(6): 1619-1635, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36919679

RESUMO

The cosmetic industry has been committed to promoting less hazardous products to reduce the environmental impacts of cosmetic ingredients. This requires identifying safer cosmetic ingredients for developing cosmetic formulations that are less harmful to the environment. However, one of the challenges in developing eco-friendly cosmetics relies on integrating all environmental hazard (EH) information of cosmetic ingredients to select the most eco-friendly ones (i.e., ingredients least harmful to the aquatic environment). Thus, we developed a hazard scoring tool (IARA matrix), which integrates data on biodegradation, bioaccumulation, and acute aquatic toxicity, providing a hazard index to classify cosmetic ingredients (raw materials) into categories of EH (low, moderate, high, or very high). The classification of the IARA was based on parameters established by Cradle to Cradle (C2C), the US Environmental Protection Agency (USEPA), and European Regulation 1272/2008, considering the most conservative values of each source. The Leopold matrix was employed as a model for the tool, using a numerical scale from 0 to 6 (lowest to highest EH). According to the IARA, we have successfully demonstrated that ultraviolet (UV) filter ingredients have the highest EH out of 41 cosmetic ingredients commonly used for rinse-off products. In addition to UV filters, triclosan (bactericide) and dimethicone (emollient) presented the second-highest EH for aquatic ecosystems, and humectants presented the lowest hazard index. By applying the IARA in the case study of rinse-off products, we have estimated that the aquatic hazard of cosmetic products can be reduced 46% by identifying less hazardous ingredients and combining them into a cosmetic formulation. In summary, the IARA tool allows the estimation of the EH of cosmetic ingredients, provides safer products, and helps achieve sustainability for cosmetic products. Integr Environ Assess Manag 2023;19:1619-1635. © 2023 SETAC.


Assuntos
Cosméticos , Triclosan , Estados Unidos , Ecossistema , Cosméticos/toxicidade , Meio Ambiente
14.
Toxics ; 11(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36851032

RESUMO

Heavy metal pollution creates environmental health concerns. Among these, iron (Fe), copper (Cu) and manganese (Mn) are commonly found in aquatic environments due to the release of wastewaters. Phytoremediation in hydroponics uses macrophytes to treat contaminated environments, and this is influenced by environmental factors. However, the relationship between these factors and the removal of Fe, Cu and Mn by macrophytes is not known. Therefore, a meta-analysis serves to determine the correlations between environmental factors and the removal of these metals in real wastewater by macrophytes, as well as to identify the role of different aquatic forms of macrophytes in phytoremediation. Emergent macrophytes had higher concentrations of manganese in their tissues, and higher bioconcentrations factor of iron and manganese than floating plants. Regardless of the biotope, higher concentrations of Fe and Cu decreased the ability of plants to bioconcentrate them. The correlations among exposure time, pH, dissolved oxygen, nitrogen, phosphorus, photoperiod and metal phytoremediation by plants were also found. It can be concluded that the emergent macrophytes showed better performance in terms of the removal of Fe, Cu and Mn, and that the significant correlations between environmental factors and removal vary with the type of metal and the environmental factor analyzed.

15.
Environ Sci Pollut Res Int ; 30(18): 52472-52484, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36840883

RESUMO

In this study, the Sphagnum perichaetiale Hampe biomass was collected, characterized, and used as a biosorbent in the removal of crystal violet from water. The chemical and morphological results suggest that even after minimal experimental procedures, the biomass presented interesting properties regarding the adsorption of contaminants. Results of adsorption showed that the pH was not a relevant parameter and the best adsorbent dosage was 0.26 g L-1. The kinetic results presented an initial fast step and the equilibrium was reached after 180 min. For the equilibrium data, the best adjustment occurred for the Sips model, reaching a maximum adsorption capacity of 271.05 mg g-1 and the removal percentage obtained in the maximum adsorbent dosage was 97.11%. The thermodynamic studies indicated a reversible process and that the mass-transfer phenomena is governed by the physisorption mechanism. In addition to its great performance as a biosorbent, Sphagnum perichaetiale biomass also presents economic and sustainable benefits, as its production does not require costs with reagents or energy, usually used in chemical and physical activation. The reversible process indicated that the biosorbent could be reused, decreasing the costs related to the treatment of the effluents. Thus, Sphagnum perichaetiale biomass can be considered an efficient low-cost and eco-friendly biosorbent.


Assuntos
Sphagnopsida , Poluentes Químicos da Água , Adsorção , Violeta Genciana , Biomassa , Poluentes Químicos da Água/análise , Cinética , Concentração de Íons de Hidrogênio , Termodinâmica
16.
Environ Sci Pollut Res Int ; 30(18): 51920-51931, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36820982

RESUMO

Herein, the methylene blue (MB) biosorption from the agroindustrial residue (cassava bagasse) is reported. The cassava bagasse residue presented an irregular surface, anionic character, and low specific surface area. The experiments were performed in batch mode. The biosorption behavior was investigated through the experimental variables, initial concentration of MB, pH, and temperature. The maximum biosorption capacity (170.13 mg g-1) reached 328 K and pH 10.0. The equilibrium and kinetics were better fitted by the Sips and general order (R2 ≥ 0.997 and R2adj ≥ 0.996) models, respectively. Furthermore, the thermodynamic study revealed a spontaneous (ΔG0 < 0) and endothermic process. Finally, the results showed cassava bagasse is a potential material for biosorption dyes from the aqueous medium. In addition, the biosorbent has a low aggregate cost and high availability, which contributes to the destination of large amounts of waste and inspires engineering applications.


Assuntos
Poluentes Ambientais , Manihot , Poluentes Químicos da Água , Azul de Metileno/química , Água , Poluentes Químicos da Água/análise , Adsorção , Concentração de Íons de Hidrogênio , Termodinâmica , Cinética
17.
Environ Sci Pollut Res Int ; 30(16): 48270-48287, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36759406

RESUMO

Free formaldehyde is a carcinogen whose emission reduction in particleboard has been studied recently to mitigate this environmental and human health problem. One alternative to reduce the emission of formaldehyde in particleboards is by using adhesives produced from natural sources. Cardanol-formaldehyde is an environmentally friendly adhesive made with cashew nut liquid, a byproduct from the cashew chain. This work aimed to produce particleboard using cardanol-formaldehyde in place of urea. In addition, different proportions of bean straw wastes were used to replace pine wood. The combination of eco-friendly adhesive and lignocellulosic waste particles could result in a product that meets market demands while being environmentally nonaggressive. Cardanol-formaldehyde promoted a higher modulus of elasticity (MOE) (1172 MPa) and modulus of rupture (MOR) (4.39 MPa) about panels glued with urea-formaldehyde, which presented a MOE of 764 MPa and MOR of 2.45 MPa. Furthermore, the cardanol-formaldehyde adhesive promoted a 93% reduction in formaldehyde emission, with a reduction from 16.76 to 1.09 mg/100 g oven-dry board for particleboards produced with cardanol-formaldehyde, indicating potential as an adhesive in the particleboard industry.


Assuntos
Anacardium , Madeira , Humanos , Adesivos , Formaldeído , Ureia
18.
Environ Technol ; 44(19): 2969-2982, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35226584

RESUMO

In response to the intensification of eco-friendly routes as a strategy to access compounds of interest, extraction based on hydrothermal technologies is an efficient method to obtain high yields of compounds present in lignocellulosic materials. Accordingly, this study investigated the effects of the combination of ultrasonic pretreatments (energy density, 1.23 × 103-37.6 × 103 J/cm3; reaction time, 15 and 60 min) and subcritical water hydrolysis (SWH) (temperature, 220°C; flow rate, 10-30 mL/min; and reaction time, 0.5-15 min) on sugar yield profile from residual biomass of rice, soybean, and pecan. A characterization of the sugars present in the hydrolyzed solutions by high-performance liquid chromatography (HPLC) and a physicochemical evaluation of biomasses by Fourier-transform infrared spectroscopy (FT-IR) was performed. The highest yield reported were 23.8/100 g biomass, 14.4/100 g biomass, and 6.0/100 g biomass for pecan shell, rice shell, and soybean straw, respectively. Cellobiose, glucose, xylose, and arabinose were quantified by the HPLC, as well as inhibitors and organic acids. FT-IR indicated the compositions of the fresh and pretreated samples. Appropriately, the combined application of ultrasonic and SWH methods supported the valorization and optimization of high potential materials generated in agricultural processing.


Assuntos
Ultrassom , Água , Biomassa , Hidrólise , Água/química , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Crit Rev Food Sci Nutr ; 63(11): 1527-1550, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34407716

RESUMO

Scientific research on developing and characterizing eco-friendly metal nanoparticles (NPs) is an active area experiencing currently a systematic and continuous growth. A variety of physical, chemical and more recently biological methods can be used for the synthesis of metal nanoparticles. Among them, reports supporting the potential use of algae in the NPs green synthesis, contribute with only a minor proportion, although seaweed was demonstrated to perform as a successful reducing and stabilizing agent. Thus, the first part of the present review depicts the up-to-date information on the use of algae extracts for the synthesis of metal nanoparticles, including a deep discussion of the certain advantages as well as some limitations of this synthesis route. In the second part, the available characterization techniques to unravel their inherent properties such as specific size, shape, composition, morphology and dispersibility are comprehensively described, to finally focus on the factors affecting their applications, bioactivity, potential toxic impact on living organisms and incorporation into food matrices or food packaging, as well as future prospects. The present article identifies the key knowledge gap in a systematic way highlighting the critical next steps in the green synthesis of metal NPs mediated by algae.


Assuntos
Nanopartículas Metálicas , Alga Marinha , Química Verde/métodos , Nanopartículas Metálicas/química , Verduras , Plantas , Indústria Alimentícia , Extratos Vegetais/química
20.
Carbohydr Polym ; 301(Pt A): 120271, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436873

RESUMO

A novel, easily prepared and accessible water-soluble supramolecular catalyst for the Suzuki-Miyaura CC coupling reaction was synthesized and characterized by FTIR, NMR, XRD, SEM, and HR-TEM. An inexpensive Pd(II) source added to the resulting aqueous solution of thioglycolic ester ß-cyclodextrin (1-TGA-SH-ß-CD/PdCl2) showed Pd nanoclusters and efficient catalytic activity for Suzuki-Miyaura CC coupling reactions of aryl halides with aryl boronic acids, employing K2CO3 as base, in an environmentally benign aqueous solution prepared in open flasks. Organic aryl halides including chlorides can produce moderate to excellent yields with aryl boronic acids and a small catalytic amount (0.01 mol%) of 1-TGA-SH-ß-CD/PdCl2. This hydro-soluble catalyst stock solution was stable for long periods (more than three months) and could be reused in two runs until showing loss of catalytic activity. Some experiments to understand the mechanism were performed, with the results suggesting incorporation of aryl halide in the catalytic cavity.


Assuntos
Água , beta-Ciclodextrinas , Água/química , Ésteres , Catálise , Ácidos Borônicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA