Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 225(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35929492

RESUMO

In ecdysozoan animals, moulting entails the production of a new exoskeleton and shedding of the old one during ecdysis. It is induced by a pulse of ecdysone that regulates the expression of different hormonal receptors and activates a peptide-mediated signalling cascade. In Holometabola, the peptidergic cascade regulating ecdysis has been well described. However, very little functional information regarding the neuroendocrine regulation of ecdysis is available for Hemimetabola, which display an incomplete metamorphosis. We use Rhodnius prolixus as a convenient experimental model to test two hypotheses: (1) the role of neuropeptides that regulate ecdysis in Holometabola is conserved in hemimetabolous insects; and (2) the neuropeptides regulating ecdysis play a role in the regulation of female reproduction during the adult stage. The RNA interference-mediated reduction of ecdysis triggering hormone (ETH) mRNA levels in fourth-instar nymphs resulted in lethality at the expected time of ecdysis. Unlike in holometabolous insects, knockdown of eth and orcokinin isoform A (oka) did not affect oviposition in adult females, pointing to a different endocrine regulation of ovary maturation. However, eth knockdown prevented egg hatching. The blockage of egg hatching appears to be a consequence of embryonic ecdysis failure. Most of the first-instar nymphs hatched from the eggs laid by females injected with dsRNA for eclosion hormone (dsEH), crustacean cardioactive peptide (dsCCAP) and dsOKA died at the expected time of ecdysis, indicating the crucial involvement of these genes in post-embryonic development. No phenotypes were observed upon corazonin (cz) knockdown in nymphs or adult females. The results are relevant for evolutionary entomology and could reveal targets for neuropeptide-based pest control tools.


Assuntos
Neuropeptídeos , Rhodnius , Animais , Feminino , Metamorfose Biológica , Muda/fisiologia , Neuropeptídeos/metabolismo , Reprodução , Rhodnius/genética
2.
Curr Res Insect Sci ; 1: 100014, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36003598

RESUMO

Insect neuropeptides, play a central role in the control of many physiological processes. Based on an analysis of Nyssorhynchus albimanus brain transcriptome a neuropeptide precursor database of the mosquito was described. Also, we observed that adipokinetic hormone/corazonin-related peptide (ACP), hugin and corazonin encoding genes were differentially expressed during Plasmodium infection. Transcriptomic data from Ny. albimanus brain identified 29 pre-propeptides deduced from the sequences that allowed the prediction of at least 60 neuropeptides. The predicted peptides include isoforms of allatostatin C, orcokinin, corazonin, adipokinetic hormone (AKH), SIFamide, capa, hugin, pigment-dispersing factor, adipokinetic hormone/corazonin-related peptide (ACP), tachykinin-related peptide, trissin, neuropeptide F, diuretic hormone 31, bursicon, crustacean cardioactive peptide (CCAP), allatotropin, allatostatin A, ecdysis triggering hormone (ETH), diuretic hormone 44 (Dh44), insulin-like peptides (ILPs) and eclosion hormone (EH). The analysis of the genome of An. albimanus and the generated transcriptome, provided evidence for the identification of myosuppressin neuropeptide precursor. A quantitative analysis documented increased expression of precursors encoding ACP peptide, hugin and corazonin in the mosquito brain after Plasmodium berghei infection. This work represents an initial effort to characterize the neuropeptide precursors repertoire of Ny. albimanus and provides information for understanding neuroregulation of the mosquito response during Plasmodium infection.

3.
J Insect Physiol ; 108: 31-39, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29778903

RESUMO

Ecdysis is a vital process for insects, during which they shed the old cuticle in order to emerge as the following developmental stage. Given its relevance for survival and reproduction, ecdysis is tightly regulated by peptidic hormones that conform an interrelated neuromodulatory network. This network was studied in species that undergo a complete metamorphosis, but not in hemimetabola. In a recent work, we demonstrated that orcokinin neuropeptides are essential for ecdysis to occur in the kissing bug Rhodnius prolixus. Here we performed gene silencing, quantitative PCR and in vitro treatments in order to study the interrelationships between RhoprOKs and hormones such as ecdysis triggering hormone, corazonin, eclosion hormone, crustacean cardioactive peptide and ecdysone. Our results suggest that RhoprOKs directly or indirectly regulate the expression of other genes. Whereas RhoprOKA is centrally involved in the regulation of gene expression, RhoprOKB is implicated in processes related to midgut physiology. Therefore, we propose that the different transcripts encoded in RhoprOK gene could integrate signaling cues, in order to coordinate the nutritional state with development and ecdysis. Given the emerging data that point to OKs as important factors for survival and reproduction, they could be candidates in the search for new insect management strategies based on neuroendocrine targets.


Assuntos
Neuropeptídeos/fisiologia , Rhodnius/fisiologia , Animais , Inativação Gênica , Hormônios de Inseto/genética , Hormônios de Inseto/metabolismo , Muda/genética , Muda/fisiologia , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Rhodnius/genética
4.
Elife ; 52016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27976997

RESUMO

Neuropeptides play a key role in the regulation of behaviors and physiological responses including alertness, social recognition, and hunger, yet, their mechanism of action is poorly understood. Here, we focus on the endocrine control ecdysis behavior, which is used by arthropods to shed their cuticle at the end of every molt. Ecdysis is triggered by ETH (Ecdysis triggering hormone), and we show that the response of peptidergic neurons that produce CCAP (crustacean cardioactive peptide), which are key targets of ETH and control the onset of ecdysis behavior, depends fundamentally on the actions of neuropeptides produced by other direct targets of ETH and released in a broad paracrine manner within the CNS; by autocrine influences from the CCAP neurons themselves; and by inhibitory actions mediated by GABA. Our findings provide insights into how this critical insect behavior is controlled and general principles for understanding how neuropeptides organize neuronal activity and behaviors.


Assuntos
Comportamento Animal/efeitos dos fármacos , Drosophila/fisiologia , Muda , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neurotransmissores/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA