Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 281, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570417

RESUMO

Streptococcus pneumoniae can cause diseases with high mortality and morbidity. The licensed vaccines are based on capsular polysaccharides and induce antibodies with low cross reactivity, leading to restricted coverage of serotypes. For surpassing this limitation, new pneumococcal vaccines are needed for induction of broader protection. One important candidate is the pneumococcal surface protein A (PspA), which can be classified in 6 clades and 3 families. We have reported an efficient process for production and purification of untagged recombinant PspA from clade 4 (PspA4Pro). We now aim to obtain a highly pure recombinant PspA from clade 1 (PspA1) to be included, together with PspA4Pro, in a vaccine formulation to broaden response against pneumococci. The vector pET28a-pspA1 was constructed and used to transform Escherichia coli BL21(DE3) strain. One clone with high production of PspA1 was selected and adapted to high-density fermentation (HDF) medium. After biomass production in 6 L HDF using a bioreactor, the purification was defined after testing 3 protocols. During the batch bioreactor cultivation, plasmid stability remained above 90% and acetate formation was not detected. The final protein purification process included treatment with a cationic detergent after lysis, anion exchange chromatography, cryoprecipitation, cation exchange chromatography, and multimodal chromatography. The final purification process showed PspA1 purity of 93% with low endotoxin content and an overall recovery above 20%. The novel established process can be easily scaled-up and proved to be efficient to obtain a highly pure untagged PspA1 for inclusion in vaccine formulations. KEY POINTS: • Purification strategy for recombinant PspA1 from Streptococcus pneumoniae • Downstream processing for untagged protein antigens, the case of PspA1 • Purification strategy for PspA variants relies on buried amino acids in their sequences.


Assuntos
Proteínas de Bactérias , Streptococcus pneumoniae , Humanos , Animais , Camundongos , Proteínas de Bactérias/química , Streptococcus pneumoniae/genética , Vacinas Pneumocócicas/metabolismo , Anticorpos Antibacterianos , Camundongos Endogâmicos BALB C
2.
Biomater Adv ; 157: 213754, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211507

RESUMO

Chronic wounds pose significant health concerns. Current treatment options include natural compounds like natural rubber latex (NRL) from Hevea brasiliensis. NRL, particularly the F1 protein fraction, has demonstrated bioactivity, biocompatibility, and angiogenic effects. So far, there is no study comparing F1 protein with total NRL serum, and the necessity of downstream processing remains unknown. Here, we evaluated the angiogenic potential of F1 protein compared to total NRL serum and the need for downstream processing. For that, ion exchange chromatography (DEAE-Sepharose), antioxidant activity, physicochemical characterization, cell culture in McCoy fibroblasts, and wound healing in Balb-C mice were performed. Also, the evaluation of histology and collagen content and the levels of inflammatory mediators were quantified. McCoy fibroblast cell assay showed that F1 protein (0.01 %) and total NRL serum (0.01 %) significantly increased cell proliferation by 47.1 ± 11.3 % and 25.5 ± 2.5 %, respectively. However, the AA of F1 protein (78.9 ± 0.8 %) did not show a significant difference compared to NRL serum (77.0 ± 1.1 %). F1 protein and NRL serum were more effective in wound management in rodents. Histopathological analysis confirmed accelerated healing and advanced tissue repair. Similarly, the F1 protein (0.01 %) increased collagen, showing that this fraction can stimulate the synthesis of collagen by fibroblastic cells. Regarding cytokines production (IL-10, TNF-α, IFN-γ), F1 protein and NRL serum did not exert an impact on the synthesis of these cytokines. Furthermore, we did not observe statistically significant changes in dosages of enzymes (MPO and EPO) among the groups. Nevertheless, Nitric Oxide dosage was reduced drastically when the F1 protein (0.01 %) protein was applied topically. These findings contribute to the understanding of F1 protein and NRL serum properties and provide insights into cost-effectiveness and practical applications in medicine and biotechnology. Therefore, further research is needed to assess the economic feasibility of downstream processing for NRL-based herbal medicine derived from Hevea brasiliensis.


Assuntos
Hevea , Borracha , Animais , Camundongos , Látex , Hevea/química , Cicatrização , Colágeno , Citocinas
3.
Int J Biol Macromol ; 239: 124300, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011748

RESUMO

This work aimed to develop a phosphorous-based biorefinery process for obtaining phosphorylated lignocellulosic fractions in a one-pot protocol from coconut fiber. Natural coconut fiber (NCF) was mixed with 85 % m/m H3PO4 at 70 °C for 1 h to yield the modified coconut fiber (MCF), aqueous phase (AP), and coconut fiber lignin (CFL). MCF was characterized by its TAPPI, FTIR, SEM, EDX, TGA, WCA, and P content. AP was characterized regarding its pH, conductivity, glucose, furfural, HMF, total sugars and ASL contents. CFL structure was evaluated by FTIR, 1H, 31P and 1H-13C HSQC NMR, TGA and P content and was compared to that of milled wood lignin (MWL). It was observed that MCF and CFL were phosphorylated during the pulping (0.54 and 0.23 % wt., respectively), while AP has shown high sugar levels, low inhibitor content, and some remaining phosphorous. The phosphorylation of MCF and CFL also showed an enhancement of their thermal and thermo-oxidative properties. The results show that a platform of functional materials such as biosorbents, biofuels, flame retardants, and biocomposites can be created through an eco-friendly, simple, fast, and novel biorefinery process.


Assuntos
Cocos , Lignina , Lignina/química , Açúcares , Glucose , Biomassa
4.
Pharmaceutics ; 16(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38258049

RESUMO

The development of biotransformation must integrate upstream and downstream processes. Upstream bioprocessing will influence downstream bioprocessing. It is essential to consider this because downstream processes can constitute the highest cost in bioprocessing. This review comprehensively overviews the most critical aspects of upstream and downstream bioprocessing in enzymatic biocatalysis. The main upstream processes discussed are enzyme production, enzyme immobilization methodologies, solvent selection, and statistical optimization methodologies. The main downstream processes reviewed in this work are biocatalyst recovery and product separation and purification. The correct selection and combination of upstream and downstream methodologies will allow the development of a sustainable and highly productive system.

5.
Biotechnol Bioeng ; 119(9): 2505-2517, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35689353

RESUMO

Plants are economical and sustainable factories for the production of recombinant proteins. Currently, numerous proteins produced using different plant-based systems with applications as cosmetic and tissue culture ingredients, research and diagnostic reagents, and industrial enzymes are marketed worldwide. In this study, we aimed to demonstrate the usefulness of a plant-based system to synthesize a single-chain antibody (scFv)-elastin-like polypeptide (ELP) fusion to be applied as an affinity precipitation reagent of the difficult to produce recombinant proteins. We used the human tissue transglutaminase (TG2), the main celiac disease autoantigen, as a proof of concept. We cloned a TG2-specific scFv and fused it to a short hydrophobic ELP tag. The anti-TG2-scFv-ELP was produced in Nicotiana benthamiana and was efficiently recovered by an inverse transition cycling procedure improved by coaggregation with bacteria-made free ELP. Finally, the scFv-ELP was used to purify both plant-synthesized human TG2 and also Caco-2-TG2. In conclusion, this study showed for the first time the usefulness of a plant-based expression system to produce an antibody-ELP fusion designed for the purification of low-yield proteins.


Assuntos
Elastina , Nicotiana , Células CACO-2 , Elastina/química , Humanos , Fragmentos de Imunoglobulinas , Peptídeos/química , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
6.
Bioengineered ; 13(4): 9645-9661, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35436410

RESUMO

The growing, existing demand for low-cost and high-quality hyaluronic acid (HA) needs an outlook of different possible production strategies from renewable resources with the reduced possibility of cross-infections. Recently, the possibility of producing HA from harmless microorganisms appeared, which offers the opportunity to make HA more economical, without raw material limitations, and environmentally friendly. HA production is mainly reported with Lancefield Streptococci A and C, particularly from S. equi and S. zooepidemicus. Various modes of fermentation such as batch, repeated batch, fed-batch, and continuous culture have been investigated to optimize HA production, particularly from S. zooepidemicus, obtaining a HA yield of 2.5 g L-1 - 7.0 g L-1. Among the different utilized DSP approaches of HA production, recovery with cold ethanol (4°C) and cetylpyridinium chloride is the ideal strategy for lab-scale HA production. On the industrial scale, besides using isopropanol, filtration (0.22 um), ultrafiltration (100 kDa), and activated carbon absorption are employed to obtain HA of low molecular weight and additional ultrafiltration to purify HA of higher MW. Even though mature technologies have already been developed for the industrial production of HA, the projections of increased sales volume and the expansion of application possibilities require new processes to obtain HA with higher productivity, purity, and specific molecular weights. In this review, we have put forth the progress of HA technological research by discussing the microbial biosynthetic aspects, fermentation and downstream strategies, industrial-scale scenarios of HA, and the prospects of HA production to meet the current and ongoing market demands.


Assuntos
Streptococcus equi , Biotecnologia , Fermentação , Ácido Hialurônico , Peso Molecular
7.
Antibiotics (Basel) ; 10(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477401

RESUMO

Clavulanic acid (CA) is an irreversible ß-lactamase enzyme inhibitor with a weak antibacterial activity produced by Streptomyces clavuligerus (S. clavuligerus). CA is typically co-formulated with broad-spectrum ß­lactam antibiotics such as amoxicillin, conferring them high potential to treat diseases caused by bacteria that possess ß­lactam resistance. The clinical importance of CA and the complexity of the production process motivate improvements from an interdisciplinary standpoint by integrating metabolic engineering strategies and knowledge on metabolic and regulatory events through systems biology and multi-omics approaches. In the large-scale bioprocessing, optimization of culture conditions, bioreactor design, agitation regime, as well as advances in CA separation and purification are required to improve the cost structure associated to CA production. This review presents the recent insights in CA production by S. clavuligerus, emphasizing on systems biology approaches, strain engineering, and downstream processing.

8.
Artigo em Inglês | MEDLINE | ID: mdl-32760431

RESUMO

BACKGROUND: Antivenoms are the only validated treatment against snakebite envenoming. Numerous drawbacks pertaining to their availability, safety and efficacy are becoming increasingly evident due to low sustainability of current productions. Technological innovation of procedures generating therapeutics of higher purity and better physicochemical characteristics at acceptable cost is necessary. The objective was to develop at laboratory scale a compact, feasible and economically viable platform for preparation of equine F(ab')2 antivenom against Vipera ammodytes ammodytes venom and to support it with efficiency data, to enable estimation of the process cost-effectiveness. METHODS: The principle of simultaneous caprylic acid precipitation and pepsin digestion has been implemented into plasma downstream processing. Balance between incomplete IgG breakdown, F(ab')2 over-digestion and loss of the active drug's protective efficacy was achieved by adjusting pepsin to a 1:30 substrate ratio (w/w) and setting pH at 3.2. Precipitation and digestion co-performance required 2 h-long incubation at 21 °C. Final polishing was accomplished by a combination of diafiltration and flow-through chromatography. In vivo neutralization potency of the F(ab')2 product against the venom's lethal toxicity was determined. RESULTS: Only three consecutive steps, performed under finely tuned conditions, were sufficient for preservation of the highest process recovery with the overall yield of 74%, comparing favorably to others. At the same time, regulatory requirements were met. Final product was aggregate- and pepsin-free. Its composition profile was analyzed by mass spectrometry as a quality control check. Impurities, present in minor traces, were identified mostly as IgG/IgM fragments, contributing to active drug. Specific activity of the F(ab')2 preparation with respect to the plasma was increased 3.9-fold. CONCLUSION: A highly streamlined mode for production of equine F(ab')2 antivenom was engineered. In addition to preservation of the highest process yield and fulfillment of the regulatory demands, performance simplicity and rapidity in the laboratory setting were demonstrated. Suitability for large-scale manufacturing appears promising.

9.
MethodsX ; 7: 100769, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021822

RESUMO

Bevacizumab is a monoclonal antibody, produced in CHO cells, used for the treatment of many human cancers. It is an anti-vascular endothelial growth factor (antsi-VEGF) that blocks the growth of tumor blood vessels. Nowadays its purification is achieved by affinity chromatography (AC) using protein A which is a very expensive ligand. On the other hand, the peptide Ac-PHQGQHIGVSK contained in the VEGF fragment binds bevacizumab with high affinity. This short peptide ligand has higher stability and lower cost than protein A and it can be prepared very easily by solid phase peptide synthesis. The present protocol describes the synthesis of Ac-PHQGQHIGVSK-agarose and its use for affinity chromatography purification of bevacizumab from a clarified CHO cell culture. •Ac-PHQGQHIGVSK-agarose capacity and selectivity are equivalent to those of protein A matrices.•The peptide ligand shows a greater stability and lower cost. The lack of Trp, Met or Cys in the peptide ligand prevents its oxidation and extends the useful life of the chromatographic matrix.•Mild conditions used during chromatography preserved the integrity of bevacizumab.

10.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;26: e20200025, 2020. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135152

RESUMO

Antivenoms are the only validated treatment against snakebite envenoming. Numerous drawbacks pertaining to their availability, safety and efficacy are becoming increasingly evident due to low sustainability of current productions. Technological innovation of procedures generating therapeutics of higher purity and better physicochemical characteristics at acceptable cost is necessary. The objective was to develop at laboratory scale a compact, feasible and economically viable platform for preparation of equine F(ab')2 antivenom against Vipera ammodytes ammodytes venom and to support it with efficiency data, to enable estimation of the process cost-effectiveness. Methods: The principle of simultaneous caprylic acid precipitation and pepsin digestion has been implemented into plasma downstream processing. Balance between incomplete IgG breakdown, F(ab')2 over-digestion and loss of the active drug's protective efficacy was achieved by adjusting pepsin to a 1:30 substrate ratio (w/w) and setting pH at 3.2. Precipitation and digestion co-performance required 2 h-long incubation at 21 °C. Final polishing was accomplished by a combination of diafiltration and flow-through chromatography. In vivo neutralization potency of the F(ab')2 product against the venom's lethal toxicity was determined. Results: Only three consecutive steps, performed under finely tuned conditions, were sufficient for preservation of the highest process recovery with the overall yield of 74%, comparing favorably to others. At the same time, regulatory requirements were met. Final product was aggregate- and pepsin-free. Its composition profile was analyzed by mass spectrometry as a quality control check. Impurities, present in minor traces, were identified mostly as IgG/IgM fragments, contributing to active drug. Specific activity of the F(ab')2 preparation with respect to the plasma was increased 3.9-fold. Conclusion: A highly streamlined mode for production of equine F(ab')2 antivenom was engineered. In addition to preservation of the highest process yield and fulfillment of the regulatory demands, performance simplicity and rapidity in the laboratory setting were demonstrated. Suitability for large-scale manufacturing appears promising.(AU)


Assuntos
Espectrometria de Massas , Antivenenos , Cromatografia , Corrente Jusante , Plasma , Imunoterapia
11.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e20200025, 2020. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-32211

RESUMO

Antivenoms are the only validated treatment against snakebite envenoming. Numerous drawbacks pertaining to their availability, safety and efficacy are becoming increasingly evident due to low sustainability of current productions. Technological innovation of procedures generating therapeutics of higher purity and better physicochemical characteristics at acceptable cost is necessary. The objective was to develop at laboratory scale a compact, feasible and economically viable platform for preparation of equine F(ab')2 antivenom against Vipera ammodytes ammodytes venom and to support it with efficiency data, to enable estimation of the process cost-effectiveness. Methods: The principle of simultaneous caprylic acid precipitation and pepsin digestion has been implemented into plasma downstream processing. Balance between incomplete IgG breakdown, F(ab')2 over-digestion and loss of the active drug's protective efficacy was achieved by adjusting pepsin to a 1:30 substrate ratio (w/w) and setting pH at 3.2. Precipitation and digestion co-performance required 2 h-long incubation at 21 °C. Final polishing was accomplished by a combination of diafiltration and flow-through chromatography. In vivo neutralization potency of the F(ab')2 product against the venom's lethal toxicity was determined. Results: Only three consecutive steps, performed under finely tuned conditions, were sufficient for preservation of the highest process recovery with the overall yield of 74%, comparing favorably to others. At the same time, regulatory requirements were met. Final product was aggregate- and pepsin-free. Its composition profile was analyzed by mass spectrometry as a quality control check. Impurities, present in minor traces, were identified mostly as IgG/IgM fragments, contributing to active drug. Specific activity of the F(ab')2 preparation with respect to the plasma was increased 3.9-fold. Conclusion: A highly streamlined mode for production of equine F(ab')2 antivenom was engineered. In addition to preservation of the highest process yield and fulfillment of the regulatory demands, performance simplicity and rapidity in the laboratory setting were demonstrated. Suitability for large-scale manufacturing appears promising.(AU)


Assuntos
Antivenenos , Corrente Jusante , Imunoterapia , Cromatografia por Troca Iônica , Espectrometria de Massas
12.
Electrophoresis ; 40(23-24): 3036-3049, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31373715

RESUMO

Exosomes are nanovesicles secreted by most cellular types that carry important biochemical compounds throughout the body with different purposes, playing a preponderant role in cellular communication. Because of their structure, physicochemical properties and stability, recent studies are focusing in their use as nanocarriers for different therapeutic compounds for the treatment of different diseases ranging from cancer to Parkinson's disease. However, current bioseparation protocols and methodologies are selected based on the final exosome application or intended use and present both advantages and disadvantages when compared among them. In this context, this review aims to present the most important technologies available for exosome isolation while discussing their advantages and disadvantages and the possibilities of being combined with other strategies. This is critical since the development of novel exosome-based therapeutic strategies will be constrained to the effectiveness and yield of the selected downstream purification methodologies for which a thorough understanding of the available technological resources is needed.


Assuntos
Biotecnologia/métodos , Técnicas de Química Analítica/métodos , Exossomos , Células Cultivadas , Humanos , Técnicas Analíticas Microfluídicas/métodos
13.
Vaccine ; 37(47): 7061-7069, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31201056

RESUMO

Flaviviruses are enveloped viruses with positive-sense, single-stranded RNA, which are most commonly transmitted by infected mosquitoes. Zika virus (ZIKV) and yellow fever virus (YFV) are flaviviruses that have caused significant outbreaks in the last few years. Since there is no approved vaccine against ZIKV, and since the existing YF attenuated vaccine presents disadvantages related to limited supply and to rare, but fatal adverse effects, there is an urgent need for new vaccines to control these diseases. Virus-like particles (VLPs) represent a recombinant platform to produce safe and immunogenic vaccines. Thus, based on our experience of expressing in recombinant mammalian cells VLPs of most flaviviruses circulating in the Americas, this work focused on the evaluation of chromatographic purification processes for zika and yellow-fever VLPs. The clarified cell culture supernatant was processed by a membrane-based anion-exchange chromatography and then a multimodal chromatographic step. With this process, it was possible to obtain the purified VLPs with a yield (including the clarification step) of 66.4% for zika and 68.1% for yellow fever. DNA clearance was in the range of 99.8-99.9%, providing VLP preparations that meet the WHO limit for this critical contaminant. Correct size and morphology of the purified VLPs were confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The promising results obtained for both zika and yellow fever VLPs indicate that this process could be potentially applied also to VLPs of other flaviviruses.


Assuntos
Flavivirus/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Células HEK293 , Humanos , Imunogenicidade da Vacina/imunologia , Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia , Zika virus/imunologia , Infecção por Zika virus/imunologia
14.
J Pept Sci ; 24(11): e3128, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30288867

RESUMO

Peptide KVPLITVSKAK was selected to design a synthetic ligand for affinity chromatography purification of recombinant human follicle stimulating hormone (rhFSH), based on the interaction of the hormone with the exoloop 3 of its receptor. The peptide was acetylated to improve its stability to degradation by exopeptidases. A cysteine was incorporated at the C-termini to facilitate its immobilization to the chromatographic activated SulfoLink agarose resin. A sample of crude rhFSH was loaded to the affinity column, using 20 mM sodium phosphate, 0.5 mM methionine, and pH 5.6 and 7.2 as adsorption and elution buffers, respectively. The dynamic capacity of the matrix was 54.6 mg rhFSH/mL matrix and the purity 94%. The percentage of oxidized rhFSH was 3.4%, and that of the free subunits was 1.2%, both in the range established by the European Pharmacopeia, as also were the sialic acid content and the isoforms profile.


Assuntos
Cromatografia de Afinidade/métodos , Hormônio Foliculoestimulante Humano/isolamento & purificação , Peptídeos/metabolismo , Proteínas Recombinantes/isolamento & purificação , Acetilação , Animais , Células CHO , Cricetulus , Hormônio Foliculoestimulante Humano/química , Hormônio Foliculoestimulante Humano/metabolismo , Humanos , Proteínas Imobilizadas/síntese química , Proteínas Imobilizadas/metabolismo , Peptídeos/síntese química , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
15.
Biotechnol Prog ; 34(4): 999-1005, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29693323

RESUMO

Recombinant human growth hormone (rhGH) is used for the treatment of several pathologies, most of them related to growth. Although different expression systems can be used for its production, the milk from transgenic cows is one of the most interesting due to the high rhGH level achieved (5 g/L). We have designed and synthesized short peptides (9 or 10 amino acid long) using Fmoc chemistry and studied their ability to purify rhGH from milk once immobilized on an agarose support. Using spiked milk with the hormone as a sample, rhGH was purified with 88% yield and 92% purity in a single step with a fold purification of 4.5. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:999-1005, 2018.


Assuntos
Cromatografia de Afinidade/métodos , Hormônio do Crescimento Humano/isolamento & purificação , Leite/química , Proteínas Recombinantes/isolamento & purificação , Animais , Hormônio do Crescimento Humano/química , Humanos , Análise Serial de Proteínas , Proteínas Recombinantes/química
16.
Appl Microbiol Biotechnol ; 102(7): 3411-3424, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29442171

RESUMO

During downstream operations involved in the purification of hydrophobic biofuels produced by microorganisms, undesired stable emulsions may be formed. Understanding the mechanisms behind this stability is a pre-requisite for designing cost-effective strategies to break these emulsions. In this work, we aimed at increasing our knowledge on the mechanisms responsible for stabilizing yeast-containing oil-in-water emulsions. For this purpose, emulsions containing hexadecane and different yeast-based aqueous phases were prepared and analyzed for phase separation, surface charge density, particle size, and rheology. First, we observed that compounds present in fresh tablet baker's yeast contribute to emulsion stability. In order to eliminate this effect, we generated stocks with this yeast in the laboratory, and compared its performance with an industrial fuel ethanol strain, namely Saccharomyces cerevisiae PE-2. We confirmed that the presence of yeast cells enhances emulsion stability. The cultivation medium (complex or defined) in which cells are grown, as well as the physiological state of the cells (pre- or post-diauxic), prior to emulsion preparation, influenced emulsion stability. The smaller cell size of tablet yeast probably also contributes to more stable emulsions, when compared to those prepared with yeast cells grown in the laboratory. Baker's and fuel ethanol yeast cells in post-diauxic phase promote the formation of more stable emulsions than those with cells in the pre-diauxic physiological state. Finally, we propose a mechanism to explain the enhanced emulsion stability due to the presence of yeast cells, with electrostatic repulsion between emulsion droplets having the prevailing effect.


Assuntos
Alcanos/química , Emulsões/química , Microbiologia Industrial , Saccharomyces cerevisiae/metabolismo , Água/química , Biocombustíveis , Eletricidade Estática
17.
Se Pu ; 35(10): 1028-1036, 2017 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-29048798

RESUMO

The main component of the Center for Genetic Engineering and Biotechnology (CIGB) candidate vaccine against Hepatitis C virus (HCV) is the pIDKE2 plasmid.The current designed downstream process for the production of pIDKE2 fulfils all regulatory requirements and renders the required quantities of pharmaceutical-grade plasmid DNA (pDNA) with 95% purity.The advantages of this procedure include high plasmid purity and the elimination of undesirable additives,such as toxic organic extractants and animal-derived enzymes.However,yields and consequently the productivity of the process are low.Previous work demonstrated that the most critical step of the process is the reverse phase chromatography,where conventional porous particle resins are used.Therefore,to increase the process productivity,alternative technologies such as membranes and chromatographic monoliths were tested as alternative options for this critical step.Here,a comparison between the behaviors of CIM® C4-HLD and Sartobind phenyl matrices was performed.To obtain higher productivities and purities,the dynamic binding capacities and selectivities were evaluated.The results showed that both matrices had a similar capacity for pIDKE2 plasmid,but the separation of pDNA isoforms using CIM technology was much better than that with Sartobind.Additionally,the optimal conditions for loading plasmid DNA on a CIM® C4-HLD 800-mL monolithic column in a real production process were determined.These optimizations will allow production levels to satisfy the high plasmid consumption demanded by clinical trials.


Assuntos
Cromatografia , Plasmídeos
18.
Prep Biochem Biotechnol ; 47(9): 945-951, 2017 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-28857720

RESUMO

The aims of the current study are to assess the influence of polyethylene glycol (PEG) concentration, molar mass, pH, and citrate concentrations on aqueous biphasic systems based on 24 factorial designs, as well as to check their capacity to purify tannase secreted by Aspergillus tamarii URM 7115. Tannase was produced through submerged fermentation at 26°C for 67 h in Czapeck-Dox modified broth and added with yeast extract and tannic acid. The factorial design was followed to assess the influence of PEG molar mass (MPEG 600; 4,000 and 8,000 g/ mol), and PEG (CPEG 20.0; 22.0 and 24.0% w/w) and citrate concentrations (CCIT 15.0, 17.5, and 20.0%, w/w), as well as of pH (6.0, 7.0, and 8.0) on the response variables; moreover, partition coefficient (K), yield (Y), and purification factor (PF) were analyzed. The most suitable parameters to purify tannase secreted by A. tamarii URM 7115 through a biphasic system were 600 (g/mol) MPEG, 24% (w/w) CPEG, 15% (w/w) CCIT at pH 6.0 and they resulted in 6.33 enzyme partition, 131.25% yield, 19.80 purification factor and 195.08 selectivity. Tannase secreted by A. tamarii URM 7115 purified through aqueous biphasic systems composed of PEG/citrate can be used for industrial purposes, since it presents suitable purification factor and yield.


Assuntos
Aspergillus/enzimologia , Hidrolases de Éster Carboxílico/isolamento & purificação , Ácido Cítrico/química , Polietilenoglicóis/química , Aspergillus/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Fracionamento Químico/métodos , Fermentação , Concentração de Íons de Hidrogênio , Água/química
19.
J Sep Sci ; 39(4): 709-16, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26638991

RESUMO

This study presents a system for expanded bed adsorption for the purification of chitosanase from broth extract in a single step. A chitosanase-producing strain was isolated and identified as Bacillus cereus C-01 and used to produce chitosanases. The expanded bed adsorption conditions for chitosanase purification were optimized statistically using STREAMLINE(TM) DEAE and a homemade column (2.6 × 30.0 cm). Dependent variables were defined by the quality criteria purification factor (P) and enzyme yield to optimize the chromatographic process. Statistical analyses showed that the optimum conditions for the maximum P were 150 cm/h load flow velocity, 6.0 cm settled bed height, and 7.36 cm distributor height. Distributor height had a strong influence on the process, considerably affecting both the P and enzyme yield. Optimizing the purification variables resulted in an approximately 3.66-fold increase in the P compared with the value under nonoptimized conditions. This system is promising for the recovery of chitosanase from B. cereus C-01 and is economically viable because it promotes the reduction steps.


Assuntos
Bacillus cereus/enzimologia , Glicosídeo Hidrolases/isolamento & purificação , Adsorção , Soluções Tampão , Quitosana/química , Cromatografia/métodos , Etanolaminas , Glicosídeo Hidrolases/química , Hidrodinâmica , Concentração de Íons de Hidrogênio , Microbiologia Industrial/métodos , Ligantes , Peso Molecular , Análise de Regressão
20.
Front Microbiol ; 6: 1106, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528259

RESUMO

Synthetic petroleum-based polymers and natural plant polymers have the disadvantage of restricted sources, in addition to the non-biodegradability of the former ones. In contrast, eco-sustainable microbial polysaccharides, of low-cost and standardized production, represent an alternative to address this situation. With a strong global market, they attracted worldwide attention because of their novel and unique physico-chemical properties as well as varied industrial applications, and many of them are promptly becoming economically competitive. Scleroglucan, a ß-1,3-ß-1,6-glucan secreted by Sclerotium fungi, exhibits high potential for commercialization and may show different branching frequency, side-chain length, and/or molecular weight depending on the producing strain or culture conditions. Water-solubility, viscosifying ability and wide stability over temperature, pH and salinity make scleroglucan useful for different biotechnological (enhanced oil recovery, food additives, drug delivery, cosmetic and pharmaceutical products, biocompatible materials, etc.), and biomedical (immunoceutical, antitumor, etc.) applications. It can be copiously produced at bioreactor scale under standardized conditions, where a high exopolysaccharide concentration normally governs the process optimization. Operative and nutritional conditions, as well as the incidence of scleroglucan downstream processing will be discussed in this chapter. The relevance of using standardized inocula from selected strains and experiences concerning the intricate scleroglucan scaling-up will be also herein outlined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA